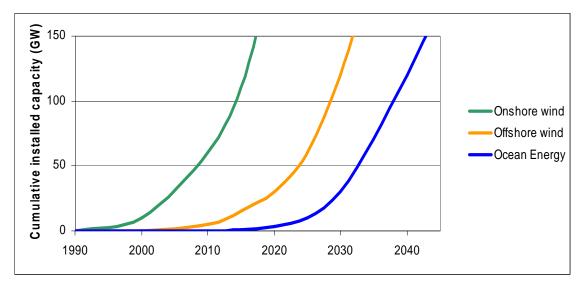
Energia Renovável Offshore em Portugal

Grupo de Trabalho "Energia e Ciência" da Comissão dos Assuntos Económicos da Assembleia da República

3 de Fevereiro de 2011
António Sarmento

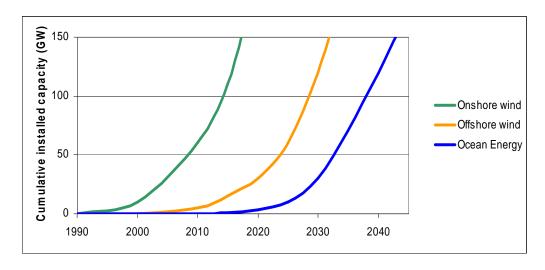
Sumário


- Estado actual da tecnologia e perspectivas
- Impacte das Energias Renováveis Offshore em Portugal
- Projectos e iniciativas nacionais
- Estratégia nacional
- Conclusões

Estado da tecnologia e perspectivas

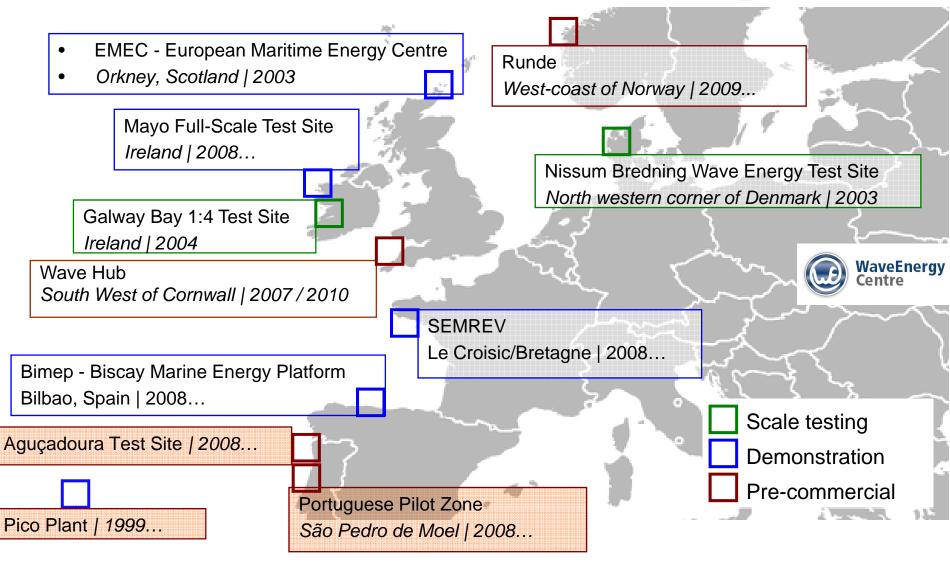
Ondas:

- Demonstração no mar de diversos conceitos
- Estabilização da tecnologia em 2015
- Demonstração comercial em 2020
- Comercialização após 2020
- Impacte significativo em 2030


Fonte: Associação Europeia de Energia dos Oceanos

Estado da tecnologia e perspectivas

Eólico offshore:


- Comercial para baixas profundidades (< 30 m)
- Demonstração no mar de diversos conceitos de plataforma flutuante (águas profundas > 50 m)
- Estabilização da tecnologia antes de 2015
- Demonstração comercial antes de 2020
- Comercialização em 2020
- Impacte significativo antes de 2030

Fonte: Associação Europeia de Energia dos Oceanos

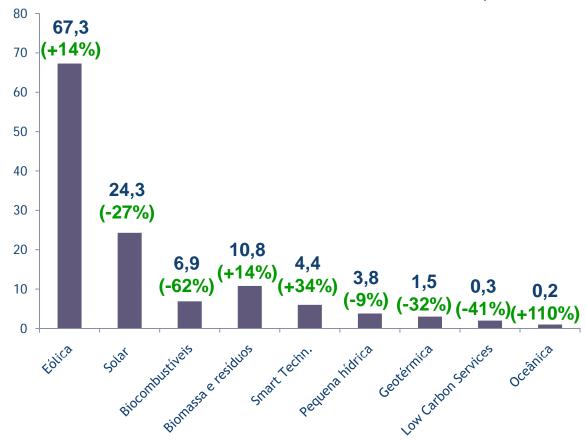
Infraestruturas Europeias de Energia das Ondas

Sumário

- Estado actual da tecnologia e perspectivas
- Impacte das Energias Renováveis Offshore em Portugal
- Projectos e iniciativas nacionais
- Estratégia nacional

Estudo E.Value (Jan 2011) – Resultados:

- E. R. são custo-efectivas em 2050 e dominam produção de energia eléctrica
- Potencial de exploração das E. R. limitado pela imposição de 30% de produção fóssil (GN)
- Potencial das E. R. limitado por considerar rede eléctrica de PT isolada do resto da Europa
- E. R. Offshore entram a partir de 2035 se PT tiver aposta agressiva na redução de GEE e abrandar requisito de 30% de produção com GN.



• Estudo E.Value (Jan 2011) – Críticas:

- Análise custo-eficácia e não custo-benefício (sociais, económicos e ambientais)
- Incerteza muito grande nas tecnologias emergentes (E. R. Offshore e carro eléctrico) torna previsões a longo prazo associadas pouco fiáveis.
- Não reflecte segurança e estabilidade de produção resultante de introdução de mais uma fonte energética (ondas)

- Estudo E.Value (Jan 2011) Informação:
 - Investimento Global em ID&D em ENERGIA em 2009 (\$ bn)
 - 2010 => 243 \$ bn (China: 51,1 \$ bn)

- Estudo E.Value (Jan 2011) Informação:
 - Financiamento nacional em ID&D em ENERGIA (k€)
 - Impacte internacional no investimento em E.R. Offshore

Ondas:

Potencial em Portugal: 5 GW / 10 TWh/ano (20% consumo electricidade actual)

Vento offshore:

Potencial em Portugal: 10 GW / 20 TWh/ano (40% consumo electricidade actual)

Potencial de emprego (sem exportação):

Installed Capacity in EU / GW	Direct Jobs	Total Jobs	CO ₂ avoided Mt / Year	Investment €m
3.6 (in 2020)	26.000	40.000	2,61	8,544
188 (in 2050)	314.213	471.320	136,3	451,104

Fonte: Associação Europeia de Energia dos Oceanos

Dinamização da Economia do Mar

Sumário

- Estado actual da tecnologia e perspectivas
- Impacte das Energias Renováveis Offshore em Portugal
- Projectos e iniciativas nacionais
- Estratégia nacional

Projectos de demonstração:

AWS (2004) Pelamis (2008)

ENERSIS

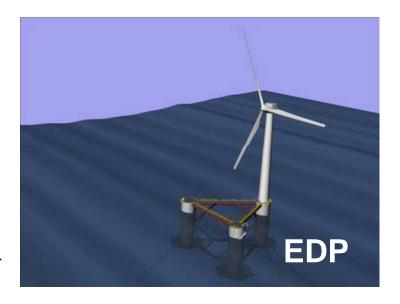
Waveroller (2007 - 13) **Wavebob** (2011) **Kymanos (2011)** WindFloat (2011)

AWS: 2001, 2 MW

Projectos de demonstração:

AWS (2004)

Pelamis (2008)

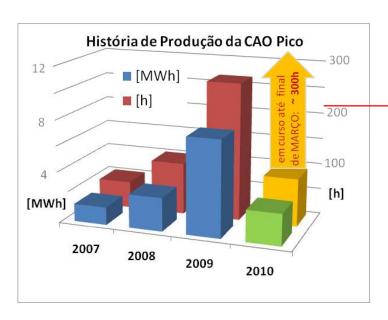

Waveroller (2007 - 13)

Wavebob (2012)

Kymanos (2012)

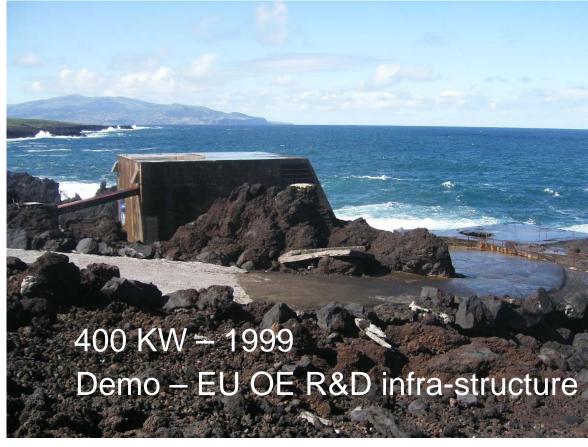
WindFloat (2011)

Kymaner


FLOAT (?)

Martifer

Oceanlinx (?)



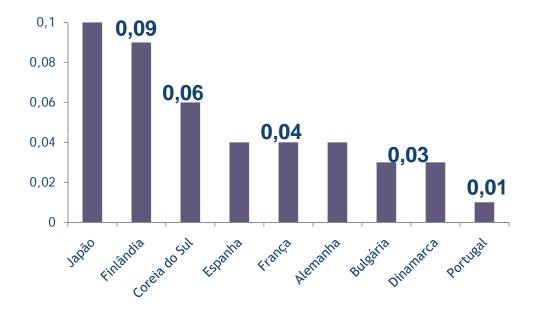
Perigo de colapso Não há fontes públicas de apoio

Central do Pico

2010: 45 MWh / 1100 h

- Pouca integração de ID&D e Engenharia PT nos projectos de demonstração desenvolvidos
- Risco de alguns projectos se deslocarem para outros países (competição de outros centros de teste europeus).
- Recurso eólico offshore mal conhecido
- Indústria PT pouco experiente em tecnologia offshore
- Poucas instituições de ID&D envolvidas

Sumário


- Estado actual da tecnologia e perspectivas
- Impacte das Energias Renováveis Offshore em Portugal
- Projectos e iniciativas nacionais
- Estratégia nacional

- Atrair projectos de demonstração (protótipos e parques de demonstração)
 - Caracterização do recurso eólico offshore nas zonas identificadas no POEM
 - Licenciamento claro e expedito até 2020 na Zona Piloto e pós Z.P. com Balcão Único efectivo na Zona Piloto
 - Cabos eléctricos offshore pagos pelo Estado até 20 MW na Zona Piloto
 - Linha específica de financiamento público a projectos de demonstração em E. R. Offshore forçando integração ID&D e Engenharia PT
 - Tarifas especiais para eólico offshore flutuante
- Reforçar competências nacionais em ID&D e industriais em tecnologia offshore

- Reforçar competências nacionais em ID&D e industriais em tecnologia offshore
 - Criação do Instituto de Energia Offshore
 - Lançamento de projectos mobilizadores através de linha de financiamento dedicada
 - Fundo de apoio à inovação em ENERGIA financiado por taxa de consumo de energia (eléctrica e combustíveis)

% do PIB em ID&D em ENERGIA (2008)

- Criação do Instituto de Energia Offshore
 - Iniciativa EDP, Galp, Martifer e EFACEC
 - Pólos em Lisboa (WavEC, IST, LNEG), Aveiro (U. Aveiro), Porto (INEGI) e Açores (?)
 - Investimento de 14 M€ (apoio QREN, REN, EDP, Galp, EFACEC e Martifer)
 - Financiamento público à operação premiando ligação à indústria e projectos europeus (modelo financiamento Fraunhofer)

- Lançamento de projectos mobilizadores do IEO
 - Wind&Wave@Sea (FAI ?)
 - Plataforma offshore experimental
 - Componentes eléctricos offshore
 - Estudo conceptual de rede eléctrica offshore ligando França a Marrocos através da costa ocidental PT
- Criação de infra-estruturas associadas ao IEO
 - Centro de Testes temporários de protótipos (QREN Centro ?)
 - Central do Pico (?)
 - Centro de modelação (incluindo Tanque de Ondas)

Conclusões

- Necessário atrair projectos de demonstração
 - Licenciamento claro e expedito Balcão Único efectivo
 - Reforço Zona Piloto cabos eléctricos pagos pelo Estado
 - Prever zona de teste para águas pouco profundas
- Reforço da integração de ID&D, Engenharia e Tecnologia nacionais nos projectos de demonstração
 - Fundos públicos dedicados
- Criação do IEO e apoio a infra-estruturas e projectos mobilizadores
- Prever desenvolvimento pós Zona Piloto
 - Regime de licenciamento e pontos de ligação eléctrica
 - Caracterização do regime de ventos offshore e das zonas para E. R. Offshore do POEM
 - Tarifas para Ondas e Eólico Offshore Flutuante