Fadiga ocupacional e processos de regulação emocional:
Um estudo exploratório com tripulantes de cabine

RICARDO MIGUEL SANTINHOS ZAMBUIAL
Nº 9378

Orientador de Dissertação:
PROF. DOUTORA TERESA C. D'OLIVEIRA

Coordenador de Seminário de Dissertação:
PROF. DOUTORA TERESA C. D'OLIVEIRA

Tese submetida como requisito parcial para a obtenção do grau de:
MESTRE EM PSICOLOGIA
Especialidade em Psicologia Social e das Organizações

2013
AGRADECIMENTOS

Primeiramente gostaria de deixar um profundo agradecimento à Prof. Doutora Teresa C. D'Oliveira, cuja motivação constante, apoio, confiança e boa disposição foi essencial para conseguido estruturar e desenvolvido este estudo. Quero agradecer igualmente a dedicação e inspiração, os longos momentos de partilha de conhecimentos e os muitos sorrisos. Foi uma longa caminhada, apesar de este ser apenas um começo do Nosso trabalho.

Gostaria de agradecer à Prof. Tânia Oliveira por toda a ajuda, disponibilidade e cooperação durante este processo, na discussão de ideias e de conceitos, e na partilha de conhecimentos noutras áreas científicas. Mas acima de tudo agradeço a boa-disposição e alegria característica de todos os momentos. “O periquito ainda voa”.

Também quero deixar o meu agradecimento a todos os meus colegas tripulantes de cabine que participaram nesta pesquisa, pese embora o cansaço de muitas horas de voo, sempre estiveram disponíveis para colaborar na recolha de dados. Por todos nós, espero contribuir para a melhoria das condições em realizamos o nosso trabalho.

Agradeço aos meus pais o apoio que sempre me deram, acreditando nas minhas capacidades, fortalecendo a minha autoconfiança. Obrigado mãe pelas longas conversas, uma forma muito tua, convencer-me a continuar.

Ao Pedro Lino por estar presente, pelas noites que passamos acordados a trabalhar, pelo incentivo e por aturar os meus devaneios e ansiedades, e por todos os momentos de felicidade. À Isabel Cambraia pela amizade e por me ouvir nos momentos mais difíceis. Aos meus amigos Joana Mascarenhas, Rui Machado, Tiago Santos, Fernando Pereira, Carolina Rodrigues, André Gomes, Ângelo Vicente e André Duarte agradeço todas as mensagens de apoio, solidariedade e carinho. A todos outros amigos deixo igualmente a minha gratidão.

Por fim, tenho a partilhar um momento. Após dez horas e vinte minutos de voo, chegado ao Aeroporto de Guarulhos em São Paulo, relembrrei pela última vez aos meus colegas que era o momento de recolher mais uma amostra de saliva. Como normalmente, iniciei todos os procedimentos para fazer uma chamada interna. Efeito da fadiga – comuniquei através de um discurso geral aos onze colegas e aos duzentos e quarenta e três passageiros que “tinha chegado a hora de salivar para tubo”.
RESUMO

O presente estudo pretende fornecer evidências empíricas das potenciais consequências da organização dos horários de trabalho, das características do trabalho e das experiências de recuperação nos níveis de fadiga percepcionados no início e no final do PSV. A literatura evidencia como indicadores da fadiga ocupacional: a distinção entre voos de NB e WB, o planeamento da escala de trabalho, a “dívida” de sono e a duração do período de tempo em que se está acordado.

Um total de 51 tripulantes de cabine participaram neste estudo, transversalmente em 82 PSV categorizados em NB e WB. Para avaliar a fadiga ocupacional utilizou-se o CIS (Bultmann et al., 2000; D’Oliveira, 2012), a Fadiga Samn-Perelli (Samn & Perelli, 1982) e a Sonolência Karolinska (Åkerstedt & Gillbert, 1990). Para medir as experiências de recuperação a The Recovery Experience (Sonnentag & Fritz, 2007; D’Oliveira, 2012).

Os resultados explanam o efeito e associação das variáveis inerentes ao contexto de trabalho nas medidas de fadiga ocupacional. Verificou-se que o modelo de investigação proposto, identifica a disrupção do ritmo circadiano (causada por despertares cedo e voos noturnos), o período de tempo acordado (vigília) e as experiências de recuperação como principais indicadores de fadiga ocupacional nos dois momentos de mensuração. Não existiu uma diferenciação estatisticamente significativa entre os voos categorizados, NB e WB. Verificou-se que o distanciamento psicológico é preditor da Fadiga Samn-Perelli no momento inicial; e que a Fadiga Samn-Perelli reportada no momento final tem como preditores a duração do PSV e a Fadiga Samn-Perelli no momento inicial.

Palavras-Chave: Características do Trabalho; Fadiga; Experiências de Recuperação; Voos de Médio e Longo-curso; Tripulantes de Cabine.
ABSTRACT

This study aims to provide empirical evidences regarding the potential consequences of non-standard work schedules, job characteristics and recovery experiences in the perceived fatigue levels at the beginning and end of PSV. The literature suggests the distinction between NB and WB flights, the rostering, sleep debt and wakefulness as occupational fatigue indicators.

A total of 51 flight attendants participated in this study across 82 PSV categorized in NB and WB. To assess the occupational fatigue it was used CIS (Bultmann et al., 2000; D’Oliveira, 2012), Fatigue Samn-Perelli (Samn & Perelli, 1982) and Karolinska Sleepiness Scale (Åkerstedt & Gillbert, 1990). To measure recovery experiences it was used The Recovery Experience Scale (Sonnentag & Fritz, 2007; D’Oliveira, 2012).

The findings show the effect and association of variables inherent to the working context in measuring occupational fatigue. It has been found that the proposed research model identifies the circadian disruption (caused by early-birds and late calls), the extended wakefulness and recovery experiences, as key indicators of occupational fatigue in both measurement moments.

There was not a significant statistical difference between flights, NB and WB. It was found that psychological detachment is a predictor of subjective fatigue Samn-Perelli in the initial moment. Both, subjective fatigue Samn-Perelli (initial moment) and time length of the PSV are predictors of fatigue levels (Samn-Perelli) in the final moment.

Key-words: Job Characteristics; Fatigue; Recovery Experiences; Medium and Long-haul flights; Flight Attendants.
ÍNDICE

Introdução... 10
Caracterização da função de tripulante de cabine e sua contextualização 11
Fadiga na aviação.. 12
Efeitos da privação do sono na Fadiga .. 14
Caracterização da tarefa e as experiências de recuperação ... 17
Sistemas de Gestão de Fadiga (FRMS) ... 17
Objetivo do Estudo ... 24
Método... 26
Participants... 26
Design... 27
Resultados.. 35
Descrição geral dos resultados ... 36
Teste de hipóteses .. 37
Estudo de hipóteses .. 44
Discussão.. 55
Referências .. 63
Anexo A: Revisão da Literatura ... 78
Anexo B: Caracterização da Amostra .. 92
Anexo C: Questionário Neutro ... 96
Anexo D: Questionário I Momento Inicial .. 106
Anexo E: Questionário II Momento Final .. 111
Anexo F: Qualidades Métricas – Escala Experiências de Recuperação 117
Anexo G: Qualidades Métricas – Escala CIS Fadiga ... 124
Anexo H: MANOVA – Efeito do tipo de voo (NB,WB) nas dimensões CIS Fadiga no
Momento Inicial (MIA)... 132
Anexo I: MANOVA – Efeito do tipo de voo (NB;WB) nas medidas Fadiga Samn-Perelli e Sonolência KSS no MIA .. 135

Anexo J: MANOVA – Efeito do tipo de voo (NB;WB) nas medidas de Fadiga no Momento Final (MFA) .. 137

Anexo K: MANOVA – Efeito do tipo de voo (NB;WB) nas medidas nas dimensões da escala Experiências de Recuperação .. 141

Anexo L: Teste *t Para Médias de Amostras Independentes* – comparação do tipo de voo com a duração do PSV .. 144

Anexo M: MANOVA – Efeito das categorias da variável “1h antes do PSV” nas dimensões CIS Fadiga no MIA .. 145

Anexo N: Teste *Post-hoc Scheffé* – Categorias de “1h antes do PSV” e as dimensões CIS Fadiga no MIA .. 147

Anexo O: MANOVA – Efeito de “1h antes do PSV” nas medidas Fadiga Samn-Perelli e Sonolência KSS no MIA .. 149

Anexo P: MANOVA – Efeito das categorias da variável “1h antes do PSV” nas dimensões CIS Fadiga no MFA .. 154

Anexo Q: MANOVA – Efeito de “1h antes do PSV” nas medidas Fadiga Samn-Perelli e Sonolência KSS no MFA .. 159

Anexo R: Teste *One-way Anova* – Comparação de médias de “1h antes do PSV” e a duração do PSV .. 164

Anexo S: MANOVA – Efeito de “1h antes do PSV” nas dimensões da escala Experiências de Recuperação .. 167

Anexo T: MRLM – Preditores da medida Fadiga Samn-Perelli no MFA .. 171

Anexo U: MRLM – Preditores da medida Fadiga Samn-Perelli no MIA .. 174
<table>
<thead>
<tr>
<th>ÍNDICE DE FIGURAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1: Sistemas base na gestão de risco associado à Fadiga</td>
</tr>
<tr>
<td>Figura 2: Modelo de Investigação</td>
</tr>
<tr>
<td>Figura 3: Equipamento/Frota voado</td>
</tr>
</tbody>
</table>
ÍNDICE DE TABELAS

Tabela 1: Descrição das características do PSV voado por média e desvio-padrão.................. 27
Tabela 2: Validade de constructo da escala Experiências de Recuperação e CIS Fadiga........ 31
Tabela 3: Fiabilidade das dimensões fatoriais da escala Experiências de Recuperação e CIS Fadiga... 32
Tabela 4: Parâmetros de Normalidade das dimensões fatoriais da escala Experiências de Recuperação e CIS Fadiga... 33
Tabela 5: Protocolo de recolha de dados .. 34
Tabela 6: Estatística Descritiva das variáveis em estudo ... 36
Tabela 7: Associações entre as medidas de Fadiga no MIA e MFA... 41
Tabela 8: Associações entre as variáveis independentes e as medidas de Fadiga nos dois momentos (MIA;MFA)... 42
Tabela 9: Associações entre as variáveis independentes e as medidas de Fadiga no MIA 43
Tabela 10: Associação entre a duração do PSV (MIAPSV) e as medidas de Fadiga nos dois momentos (MIA;MFA)... 48
Tabela 11: Diferença entre médias de MIAPSV e as categorias da variável “1h antes do PSV” .. 52
Tabela 12: Protocolo de recolha de dados, sugestão para estudos futuros............................ 62
Introdução

À semelhança de outros contextos de trabalho, as condicionantes econômicas têm contribuído para um aumento das exigências de trabalho na função de tripulante de cabine. A par de uma capacidade de adaptação emocional a diferentes situações e culturas, de uma imagem irrepreensível e destreza comercial e linguística, são exigidas robustez física e psicológica, necessárias em situações de emergência da aeronave ou dos passageiros e uma elevada assertividade e resiliência na resolução do conflito (Recrutamento TAP – Portugal, 2013).

A Agência Europeia para a Segurança da Aviação (EASA) conceptualiza a fadiga nos tripulantes como “um estado fisiológico de capacidade mental e performance reduzidas, resultante da perda de sono ou vigília prolongada e/ou outras atividades físicas que possam afetar o estado de alerta e a capacidade de operar um avião com segurança e/ou desempenhar tarefas relativas à segurança por parte da tripulação” (EASA, NPA 2009-02c: 30 Janeiro 2009: p. 17).

Ansiau, Wild, Niezborala, Rouch e Marquié (2008, cit. por Mathaab e D’Oliveira, 2012) analisaram os efeitos das condições de trabalho (i.e., tipo de tarefa, física, mental ou social), a duração, a carga e o horário de trabalho no desempenho. As atividades de um tripulante de cabine são caracterizadas pelo seu horário de trabalho atípico, com uma atividade que não permite ao trabalhador a oportunidade de ir para a cama antes da meia noite e não despertar antes das cinco da manhã (disrupção do sono noturno) em mais de 50 dias por ano. A investigação tem demonstrado que este horário de trabalho diversificado e irregular, a par de outras condições de trabalho, tem um impacto negativo na performance do dia subsequente, afetando do ponto de vista cognitivo a memória verbal e a atenção seletiva, sem que exista um efeito mediador do sono. Isto é, independentemente do número de horas de sono existem consequências negativas para o desempenho que decorrem dos horários de trabalho.

Este trabalho tem como tema central as potenciais consequências dos horários de trabalho de tripulantes de cabine de uma companhia aérea nacional. Para além de estudar as associações diretas entre os horários de trabalho (e.g., duração e momento do dia de execução da atividade) e a fadiga, o trabalho contempla características principais desta atividade como a tradicional categorização das aeronaves nas quais o trabalho executador de que decorre a
diferenciação entre voos de longo curso e médio curso. Tal distinção está diretamente associada a uma duração da atividade diária distinta (i.e., duração de voo) e a uma maior diversidade das atividades (e.g., maior número de descolagens e aterragens ou em linguagem aeronáuticas, mais “pernas” de serviço). Adicionalmente o estudo aborda as experiências de recuperação dos tripulantes e explora como as caraterísticas de trabalho mencionadas poderão ser seus potenciais antecedentes. O trabalho começa com uma caracterização da função do tripulante, a que se segue uma descrição sucinta do contexto de trabalho e uma revisão de literatura, abordando a temática fadiga, os seus indicadores, efeitos e recuperação.

Caracterização da Função Tripulante de Cabine e sua contextualização

A descrição funcional destes profissionais divide-se em três grandes áreas segundo o Instituto Nacional Aviação Civil (INAC): segurança – do avião e passageiros; salvamento – medidas de antecipação em caso de acidente/incidente durante as diferentes fases do voo; comercial – promoção do conforto, saúde e bem-estar dos passageiros e outros membros da tripulação.

Embora estes profissionais, não estejam aos comandos do avião, são os “olhos” e os “ouvidos” dos pilotos na cabine. Adicionalmente, as suas funções ao nível da segurança incluem, lidar com emergências médicas, avaliação de ameaças à segurança dos passageiros e tripulação (fazendo face ao aumento dos incidentes/acidentes relacionados ao não cumprimento das normas de segurança e de passageiros com conduta disruptiva – *unruly passengers*) (MacDonald, Deddens, Grajewski, Whelan e Hurrel, 2003). O período de serviço de voo (PSV) inclui, um *briefing* com toda a tripulação (pilotos e tripulantes de cabine), verificação de todo o material de segurança e salvamento do avião, anúncios de segurança, assegurar o cumprimento de todos os normativos legais – nacionais e internacionais e, assistência a passageiros (Nesthus, Schroeder, Connors, Rentmeister-Bryant & DeRoshia, 2007).

Desta forma, os horários de trabalho dos tripulantes consideram para além da duração do voo ou voos: os períodos de apresentação (estandardizados numa hora antes do horário estipulado de saída), o período entre a saída do parqueamento e o parqueamento do avião no aeroporto de destino, o tempo de escala e os tempos de transporte (de e para o aeroporto aquando estadia).
Fadiga na aviação

Na atualidade, a aviação é uma operação de 24h incluindo, noites, fins-de-semana e feriados. As exigências fisiológicas e psicológicas alteram a forma como os indivíduos desempenham as suas tarefas ((Rosekind, Gander, Gregory, Smith, Miller, Oyung, Webbon e Johnson, 1996).

Caldwell (2009) e D’Oliveira (2011) referem a fadiga nos tripulantes e a sua gestão operacional como o maior desafio organizacional na aviação.

O termo fadiga tem sido criticado como sendo um construto vago, multidimensional e interpretado de várias formas (Åkerstedt & Wright, 2009; Dodge, 1982).

Para D’Oliveira (2011) a Fadiga Mental, pode ser definida como um sentimento subjetivo e não especifico de cansaço, físico ou mental, enquanto que a Fadiga Física se reporta à redução da capacidade para desempenhar trabalho físico, resultante da precedência de um esforço físico. A Fadiga Mental é geralmente inferida pelo défice no desempenho/performance de tarefas que requeiram atenção/vigilância e manipulação ou recuperação de informação armazenada na memória.

Para Ashberg (2000) a fadiga é conceptualizada de forma multidimensional, aferindo a fadiga percepcionada num modelo de cinco fatores: falta de motivação, sonolência, falta de energia, exaustão e desconforto físico. Em termos de severidade, pode-se distinguir a fadiga aguda, que é mitigada após um período de descanso ou por estratégias de compensação, e a fadiga prolongada de caráter menos reversível e generalizada, que se manifesta numa diminuição da performance e do controle emocional (Bültmann, Vries, Beurskens, Bleijenberg, Vercoulen & Kant, 2000).

Caldwell (2003) refere que a fadiga ocupacional pode ser transitória, mitigada de forma eficaz com um período de sono (antes e depois do expediente) e/ou cumulativa, decorrente da recuperação incompleta da fadiga transitória ao longo de vários períodos de trabalho e que necessita de um período consecutivo de recuperação. Para além do regime de horário irregular, os tripulantes realizam voos diurnos e voos noturnos, característica facilmente identificável pelo tipo de aeronave a que estão alocados. Complementarmente, Spencer, Robertson e Folkard (2006) definem que, para além dos aspectos já mencionados, a operacionalização dos fatores preditivos de fadiga deve considerar variáveis relativas às
atividades executadas. Identificam, assim, três componentes mediadoras da fadiga: o tipo de tarefa ou atividades e seu grau de exigência, os intervalos de descanso e as características específicas de uma escala de serviço contínua (e.g., para além de um período específico de serviço - início, duração do turno e o período do dia em que é realizado - é necessário contemplar a totalidade da escala apresentada ao tripulante). Desta forma, para além da fadiga transitória será igualmente possível adicionar uma potencial componente cumulativa da fadiga ocupacional, decorrente dos períodos de trabalho unitários que constituem a escala de serviço.

Em Portugal, o Instituto Civil de Medicina Aeroespacial (CAMI) classifica a fadiga como o factor crítico com maior repercussão na performance inerente às tarefas na cabine. O CAMI destaca como principais antecedentes da fadiga dos tripulantes de cabine, a privação de sono e a des sincronização crónica dos mecanismos de regulação do relógio biológico do indivíduo. Para além das consequências para os indivíduos, é destacado o caráter precursor da fadiga na segurança e prevenção de incidentes/acidentes na aeronáutica civil (Caldwell, 2005).

Numa perspectiva algo diferente, Rosekind et al., (1996) descrevem as manifestações comportamentais típicamente associadas à fadiga no contexto da aviação considerando os sintomas reportados pelos tripulante. Oscilações repentinhas de humor, esquecimento – falhas na memória a curto/longo prazo - vigilância reduzida, “pobreza” ou dificuldade no processo de tomada de decisão, aumento dos tempos de resposta-reação, comunicação pobre e desarticulada, micro-sonos (nodding-off – movimentos repentin observados na cabeça para a frente, “cabeçadas”), fixação do olhar, apatia ou letargia são algumas das manifestações reportadas. Estes sintomas encontram-se amplamente referidos na literatura identificados como base de estudo da fadiga nos tripulantes (e.g., Åkerstedt, 1995; Avers & Johnson, 2011; Caldwell, 2005; Rosenkrans, 2010; Nesthus et al., 2007; Taneja, 2007).

Galipault (1980) e Simonson (1984) comprovam que aproximadamente 50% dos tripulantes estudados identificam o início do aparecimento de sintomas de fadiga subjetiva após 5 a 6 horas de período de serviço. Adicionalmente, voos curtos com serviço a bordo
(comida e bebidas) produzem um aumento significativo dos níveis de fadiga percepcionados. Por outras palavras, os autores destacam a importância do número de sectres voados e a sua duração no estudo da fadiga.

Efeitos da Privação do Sono na Fadiga

Dormir à noite não é apenas uma imposição social (Roma, Hursh, Mead & Nesthus, 2012).

O sono tem um papel fundamental na recuperação física e psíquica do indivíduo (Davies, 2003). O ciclo vigília-sono é considerado uma adaptação ao ciclo dia-noite, persistindo mesmo na ausência de pistas exteriores. Esta manutenção do ciclo no ritmo biológico mostra o seu caráter endógeno (Oliveira, 2013). O sono é composto por dois estados ou fases distintas: movimentos oculares rápidos (sono REM) e ondas lentas. No nosso cérebro são gerados impulsos elétricos mais intensos e mais rápidos durante o dia.

Mumm, Signal, Rock, Jones, O’Keeffe, Weaver, Zhu, Gander e Belenky (2009) referem uma acumulação dos efeitos da restrição do sono (noite após noite) diminuindo a capacidade do indivíduo manter-se alerta e funcional. Adicionalmente, demonstraram que sete horas dormidas por noite num período de sete dias consecutivos não foram suficientes para
prevenir o aumento progressivo dos níveis de fadiga subjetiva e do tempo-de-reação. O declínio era maior nos indivíduos que dormiam cinco horas e agravava-se de forma crítica para os que dormiam três horas.

Arnedt, Wilde, Munt e Maclean (2001; Dawson & Reid, 1997) demonstraram que um período superior a 17 horas acordado (i.e., wakefulness contínua) pode resultar numa redução da performance comparada à de um indivíduo com uma taxa de alcoolemia BAC = .005-.10. Para Dinges et al. (1997), o efeito cumulativo da privação de sono, tendo em conta cinco horas diárias num período consecutivo de sete dias, pode resultar num aumento do stress, fadiga, distúrbios do humor e diminuição da performance psicomotora nos períodos de vigília.

Costa (1997) evidencia que os tripulantes sofrem das mesmas perturbações de sono, apresentando níveis elevados de fadiga aquando da sua privação, que os trabalhadores que trabalham por turnos (Jamal, 2004).

A perturbação do ritmo circadiano verifica-se quando não existe uma correspondência entre o horário de trabalho e o período normal de sono do tripulante (noite), interferindo em várias dimensões, na medida em que perturba a homeostase fisiológica (ritmos biológicos, hábitos de sono e alimentares; Folkard, 2008), diminui a performance e o desempenho (D'Oliveira, 2011), interfere nos níveis de fadiga subjetiva reportados (Samn-Perelli, 1982; Samel, Wegman & Veijvoda, 1997), afetando negativamente as relações familiares (Rodrigues e D'Oliveira, 2013) e o bem-estar no trabalho (Mathaß e D'Oliveira, 2012).

Rupp, Wesensten, Bliese e Balkin (2009) referem que uma privação severa de sono (e.g., cerca de três horas de sono) leva a alterações na percepção dos níveis de fadiga individuais e de terceiros, a alterações significativas no estado de humor (aumento da irritabilidade) e da ansiedade. Os autores destacam a natureza insidiosa da privação do sono em que a partir de um determinado nível de privação os indivíduos deixam de ser capazes de avaliar e reportar a sua própria fadiga de forma fiável. Tal posição tem implicações metodológicas para o estudo da fadiga questionado a validade das medidas de sono e de fadiga resultantes da análise subjetiva do próprio.

Gander, Rosenkind e Gregory (1998) identificam como limitação na generalização dos estudos de sono e suas implicações na fadiga, o pressuposto de que os tripulantes dormem durante a noite ou de acordo com o seu ritmo circadiano. Sugerem como medida de quantificação da privação do sono, a comparação da quantidade e qualidade das horas
dormidas pelos tripulantes nos seus períodos de repouso (no local habitual de descanso) com as horas dormidas entre viagens (no local disponibilizado em escala).

A sensibilidade luminosa do ritmo circadiano, é apresentada como condicionante quando os tripulantes têm de trabalhar durante a noite e dormir durante o dia, influenciando a qualidade e a privação do sono. Esta influência torna-se mais evidente nos tripulantes que realizam viagens atravessando vários fusos-horários e experimentam mudanças repentinas no ciclo dia-noite (Gander et al., 1994; D’Oliveira, 2011).

A síndrome de mudança de fusohorário ("Jet lag"), verifica-se pela existência de um desfasamento temporal entre o ciclo vigília-sono gerado pelo ritmo biológico endógeno e os indicadores temporais externos relacionados com o fusohorário no destino. A gravidade desta perturbação aumenta com o número de fusos atravessados e com a direção da viagem (mais perturbador no sentido ocidente-oriente) (D’Oliveira, 2011).

Gander et al. (1994) observaram a existência de uma correlação significativa forte entre a temperatura corporal e níveis percepcionados de fadiga (quanto maior a percepção de fadiga, menor a temperatura corporal medida). O ritmo circadiano do indivíduo é apontado como preditor da fadiga, já que as diferenças de temperatura diferem das naturalmente observadas no ritmo natural biológico (menor temperatura corporal no período compreendido entre 3h-5h e 15h-17h).

A interação entre a pressão homeostática (necessidade de dormir) e o ritmo circadiano natural biológico, resulta em dois períodos de maior sonolência correspondentes com os períodos indicados anteriormente de menor temperatura corporal. Consegue-se aferir a existência de uma disrupção do ritmo circadiano individual, quando o período de vigília/alerta coincide com o período entre as duas e as seis da manhã (período crítico do ritmo circadiano) (Powell, Spencer, Holland & Petrie, 2008). A privação do sono é maior, quanto mais coincidente o horário de trabalho for com o período crítico circadiano, verificando-se o pior cenário quando o voo engloba a sua totalidade. É requerido ao tripulante uma maior performance e alerta quando existe uma menor capacidade de controlo nos níveis de fadiga, humor e ansiedade (Samel et al., 1997).

Samn-Perelli (1982) demonstrou que em curtos períodos de serviço (duas a quatro horas) o nível de maior de fadiga subjetiva reportada pelos tripulantes situa-se entre as três e as seis horas da manhã e o de menor entre as três e seis da tarde. Contrariamente ao observado
em longos períodos de serviço (dez a doze horas), em que os níveis de fadiga mantinham-se elevados no período entre a meia-noite e as nove da manhã e entre o meio-dia e as três da tarde. Os resultados demonstram uma interação entre a fadiga reportada com tempo de serviço e o ciclo dia-noite do ritmo circadiano. Acresce que em períodos de voo longos, os tripulantes que se encontravam ao serviço entre o meio-dia e as três da tarde sofreram de privação de sono devido à hora de despertar.

O estudo polissonográfico do sono a bordo de aeronaves, refere uma maior fragmentação e leveza (caracterizado por ondas curtas) sendo este menos restaurador (Signal, Gall & Gander, 2005).

O Organização Internacional da Aviação Civil – ICAO (2011) alerta para a inércia causada pelo despertar de um sono leve (aumentando de intensidade no despertar de um sono profundo) ou pela privação do sono, caracterizada por dificuldades na memória a curto prazo e na tomada de decisão, sentir-se grogue e desorientação temporal-espacial. Igualmente são referidas as condicionantes destes sintomas aquando uma iminente situação de emergência a bordo.

O restauro ou reposição do ciclo normal REM/não-REM é considerado um fator principal na prevenção da fadiga, sendo indicado como medida de recuperação dos efeitos da privação do sono (são necessárias três noites consecutivas para a total reposição do ciclo), constituindo recomendação, a inclusão na escala de serviço a periodicidade de um mínimo de duas noites consecutivas sem restrições de sono (Avers, King, Nesthus, Thomas & Banks, 2009; Roma, Hursh, Mead & Nesthus, 2012).

Características da tarefa e as experiências de recuperação

Ashberg (2000) distingue as exigências da tarefa em físicas e psicológicas. Os diferentes processos cognitivos são afetados pelas últimas. Da mesma forma, níveis elevados de exigências e de baixo controlo relativos à tarefa, estão associados a sentimentos de exaustão emocional e desgaste físico.

Rook e Zijlstra (2006), Sonnentag e Zijlstra (2006) demonstram que elevados níveis de fadiga, consequência da operacionalização das exigências da tarefa, indicam insucesso na recuperação da mesma no final do expediente ou dia-de-trabalho. Estabelecem como
indicador de insuficiência da recuperação o sentimento urgente do indivíduo na “necessidade de recuperação”. Esta necessidade pode-se traduzir pela fadiga percepcionada, dificuldade em relaxar ou o sentimento de cansaço no início do expediente, incapacidade de recuperação nos dias livres e alterações do humor (Demerouti, Bakker, Guerts & Tarris, 2009).

Segundo Karasek (1979) o esforço é consequência de elevadas exigências laborais, tendo em conta o reduzido controlo sobre o trabalho, o excesso de carga e pressão laboral afeto ao mesmo. O esforço mental resulta de um desequilíbrio entre as exigências do trabalho e a latitude de decisão (ou controlo laboral, definida pela necessidade de autonomia, competência e pelo controlo percepcionado sobre as tarefas e contexto laboral). Ostry, Marion, Demers, Herschler, Kelly, Techke e Hertzman (2001) designam por controlo laboral, no seu conjunto, a exigência de elevadas competências, solicitação de novas aprendizagens e estimulação da criatividade (implicando um trabalho pouco repetitivo), liberdade de execução, responsabilidade e autonomia no processo de decisão.

A função de tripulante de cabine apresenta muitas especificidades no respeitante:

a. aos horários de trabalho irregulares, nomeadamente rotações de turnos invertidas (noite-tarde-manhã) (Demerouti et al., 2009) e trabalho por turnos (Smith, Folkard & Fuller, 2003) tendo um impacto negativo sobre a oportunidade de desenvolver determinadas atividades de lazer (Sonnentag, 2001);

b. às dificuldades causadas pela adaptação brusca e repentina ao efeito dos sincronizadores externos, quer temporais, quer do ciclo dia-noite (D’Oliveira, 2011);

c. ao número de horas trabalhadas, percursos voados e tempo de transição na escala (Nesthus et. al, 2007; Rosenkrans, 2010);

d. às características dos voos, médio e longo curso (Rosenkrans, 2010);

e. à privação do sono e desincronização do ritmo circadiano (Taneja, 2007); entre outras.

Sonnentag e Natter, (2004) consideram que estas características condicionam as oportunidades de recuperação, quer pela sua influência na manutenção da vida privada (van
Hooff, Guerts, Beckers & Kompier 2011), quer pelas exigências emocionais e físicas inerentes à função.

Sonnentag e Fritz (2007) definem as experiências de recuperação, como momentos experienciados pelo indivíduo externos ao seu trabalho. Identificam quatro tipos de experiências que influenciam o processo de recuperação: o distanciamento psicológico, caracterizado pelo desprendimento mental do trabalhador em relação ao seu trabalho e das dificuldades e condicionantes do mesmo; o relaxamento, associado às atividades de lazer que promovem o bem-estar corporal (e.g., exercício físico); as experiências de domínio, abrangendo a oportunidade de novas aprendizagens e experiências motivadoras e desafiadoras, contribuindo positivamente para a autoestima (mesmo implicando um esforço adicional na construção de novas competências, têm um efeito regenerador de energia); o controlo do tempo dedicado ao lazer, sendo o poder do indivíduo na organização do seu tempo-livre controlando o que quer fazer e tendo opção na escolha das atividades de recuperação (um menor controlo percepcionado do indivíduo, leva a um aumento do negativismo relativo ao dia-a-dia, afetando negativamente o autoconceito, podendo ser causador de ansiedade e depressão). Sonnentag, Demerouti, Mojza e Bakker (2012) apresentam o distanciamento psicológico como a experiência de recuperação recorrentemente identificada nos seus estudos.

É indicado na literatura que o esforço despendido na atividade física (e.g., desporto) é um fator determinante na redução do stress e da fadiga e consequentemente na recuperação (Demerouti et al., 2009). Por outro lado, atividades de menor esforço (e.g., ir ao cinema, ver televisão ou ler um livro), também contribuem para a recuperação, uma vez que consomem poucos recursos mentais.

Da mesma forma é indicado a existência de resultados contraditórios no respeitante ao efeito das atividades sociais (e.g., jantar entre amigos ou familiares) como facilitadoras da recuperação (Sonnentag, 2001; Rook & Zijlsta, 2006; Sonnentag & Natter, 2004). Por outro lado, as atividades domésticas e responsabilidades pessoais e familiares parecem ter um impacto negativo no processo de recuperação (Sonnentag & Natter, 2004; van Hooff et al., 2011). A importância da qualidade percepcionada da experiência de recuperação (Sonnentag & Bayer, 2005) toma a primazia como condicionante do processo de recuperação.
Sistemas de Gestão de Fadiga (FRMS)

Para Gender, Graeber e Belenky (2010) os sistemas da gestão de fadiga são uma abordagem que combina o conhecimento científico contemporâneo com a arte da gestão e deverão ter como base: a monitorização dos níveis de fadiga, identificação dos momentos de maior fadiga e as suas consequências na segurança do próprio e de outros, implementação e monitorização das estratégias de mitigação da fadiga para garantir que são válidas para diminuir o risco de acidente/incidente para níveis mínimos ou nulos.

Estes sistemas têm que incorporar: estratégias ao nível de toda a organização; um bom planeamento da escala de trabalho; ter em atenção as diferenças individuais (incluindo as estratégias do próprio e proporcionando ferramentas e aprendizagens que fomentam a melhoria dessa estratégia, através da formação educacional e treino) (idem).

ICAO, Federação Internacional das Associações de Pilotos de Linha Aérea – IFALPA e Associação Internacional de Transportes Aéreos – IATA (2011) afirmam que o sucesso do Sistema de Gestão de Fadiga (FRMS) assenta na monitorização da mesma, na criação de rotinas, na recolha da informação (através do reporte voluntário de medidas subjetivas de fadiga e até análise hormonal e outros testes físicos), e na procura de apoio de entidades externas para a realização de estudos científicos válidos e credíveis. A regra base deve ser que seja percepcionado pelo trabalhador que a recolha da informação tenha como objectivo potencializar melhorias ao nível da segurança, não para atribuir responsabilidades. É recomendado pelos reguladores (e.g. ICAO, Agência Europeia para a Segurança da Aviação – EASA) que o FRMS seja integrado no Sistema de Gestão da Segurança (SMS) de toda a organização.
A ICAO (2011) defende que um sistema efetivo de reporte da fadiga assenta numa cultura de reporte. Torna-se necessária: a utilização de formulários de fácil acesso, de preenchimento e de envio; ter compreendido claramente as regras sobre a confidencialidade da informação reportada; ter uma compreensão voluntária clara acerca dos limites de proteção dos reportes; incluir análise regular de relatórios e fornecer comentários regulares aos colaboradores acerca de decisões ou ações tomadas baseadas em relatórios e lições aprendidas.

Um relatório sobre a fadiga (Gander, Rosekind & Gregory, 1998) deve incluir informação relativa ao sono recente e histórico de trabalho (pelo menos três dias), hora do evento, diferentes medidas de fadiga (e.g., estudo do estado de vigilia, escalas de sonolência) e deve conter questões abertas para permitir uma análise qualitativa do contexto e do “evento fadiga”.

A ICAO (2011) caracteriza e diferencia os voos de médio (NB) ou longo-curso (WB), em que nos primeiros os tripulantes vêm o seu sono restringido devido à curta duração dos períodos de descanso, restrições associadas a despertares muito cedo, carga de trabalho elevada durante vários momentos do dia devido aos múltiplos sectores voados e dias de trabalho longos. Os segundos, são caracterizados por longos períodos de vigília, cargas de trabalho elevadas em momentos em que o ritmo circadiano dita maior letargia, ao contrariar a orientação para dormir relativamente ao ciclo dia-noite, disrupção do ritmo circadiano (devido
ao trabalho noturno), maior fragmentação dos padrões de sono, *Jet Lag* e mudanças no padrão do ritmo circadiano (avanço ou atraso do ritmo circadiano biológico).

A experiência do operador e a legislação específica para os dois tipos de voo (NB;WB) levaram a que recentemente fossem descritos e padronizados *processos preditivos da fadiga* e desenvolvidos modelos bio-matemáticos que permitem a automatização informática do processo de gestão de fadiga através da gestão de tripulações, tendo como base pressupostos generalizados na organização e planeamento de voos (*UK Civil Aviation Authority* – CAA; Spencer & Robertson, 2007).

Enfatizam o fato de que os modelos estudados diferem bastante relativamente aos seus objetivos e capacidades. Todos os modelos reportam como os fatores ligados ao ritmo circadiano os principais preditores de fadiga, e são diferenciados relativamente ao papel do sono e dos horários de trabalho como *inputs* no modelo de predição: quatro dos sete modelos estudados têm o horário de trabalho como variável única e determinante dos efeitos da fadiga na performance e segurança, enquanto os restantes baseiam-se nos vários aspectos inerentes à hora de dormir como *input* no modelo. Os seus *outputs* também foram diferenciados: cinco dos modelos estudados suportam a predição de resultados de mitigação da fadiga em estudos experimentais conduzidos em laboratório, pesquisa de campo e dados operacionais. Os restantes dois não tiveram em consideração os resultados de predição de estudos experimentais laboratoriais (idem).

O *System for Aircrew Fatigue Evaluation (SAFE 2.09)* Model desenvolvido por Belyavin e Spencer (2004) vê recomendada a sua utilização na aeronáutica comercial pela
CAA (2011). O modelo foi desenvolvido tendo como base estudos laboratoriais e ajustado à aviação pelo estudo de campo realizado em voos WB. É descrito pela combinação de um componente sinusoidal da altura do dia com uma correlação cúbica do tempo sem dormir.

Amplamente utilizado na aviação o Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) Model (Hurst, Redmond, Johnson et al., 2004) engloba o conceito do reservatório de sono (consequência da cumulação das restrições de sono), ritmo circadiano e inércia do sono aditivamente combinados num único fator ou componente. O modelo assume algorítmicamente que o sono ocorre entre as 22h e as 6h, sendo considerada privação de sono quando cumulativamente o tripulante dorme fora deste intervalo. Em adição ao modelo foi desenvolvida a Fatigue Avoidance Scheduling Tool (FAST) (Eddy & Hursh, 2001) desenhada com o objetivo de otimizar a gestão operacional das tripulações. O software FAST propõe através de um conjunto de preditores do modelo SAFTE a automatização do planeamento de voos e tripulações, minimizando os efeitos da fadiga, potenciando a sua mitigação e ajustamento do tempo de descanso na recuperação (Mallis et al. 2004).

O Fatigue Audit InterDyne (FAID) Model (Roach, Fletcher & Dawson, 2004) é conceptualizado no pressuposto de determinação do nível de fadiga pela comparação entre a fadiga acumulada durante os períodos de trabalho (tendo em conta um histórico de sete dias) e a quantificação da recuperação nos períodos de folga. Os níveis de fadiga dos períodos de trabalho e os valores de recuperação são determinados pelo seu momento de ocorrência, duração e os sete dias anteriores ao dia de trabalho (Mallis et al., 2004). Este modelo é indicado pela Civil Aviation Safety Authority.

Os modelos orientados para as operações aéreas civis (SAFE, SAFTE e FAID) englobam inputs de padrões trabalho/descanso, nomeadamente trabalho por turnos, operações contínuas 24h, privação parcial crónica do sono, Jet Lag e o efeito de contra-medidas na mitigação da fadiga. O modelo FAID adiciona duas categorias de estimação, a recuperação potencial do sono e, alterações na função e no tempo-na-tarefa (Mallis et al. 2004). Todos os modelos têm uma abordagem preditora dos resultados de estudos laboratoriais, não tendo em conta as características individuais do tripulante, adaptando o planeamento e as estratégias de mitigação a um indivíduo médio e a um contexto de voo mediamente padronizado.
Objetivos do estudo

O presente estudo tem como objetivo desenvolver um modelo explicativo das potenciais consequências dos horários de trabalho (e.g., duração e momento do dia de execução da atividade) e das características dos voos categorizados em médio e longo-curso (diferenciados pelo tipo de aeronave, número de sectores voados, latitude e fusos horários atravessados) nos níveis de fadiga ocupacional reportados pelos tripulantes de cabine. Adicionalmente explora-se a potencial combinação de marcadores comportamentais (e.g., potenciais perturbações do sono decorrentes dos horários de trabalho) e psicológicos da fadiga ocupacional como antecedentes das experiências de recuperação.

Para analisar estas relações construiu-se um modelo de investigação, que sintetiza as hipóteses de investigação, apresentado na figura 2.

Figura 2: Modelo de Investigação

Hipótese 1: Existem associações significativas entre a Fadiga mensurada no momento inicial e o momento final.

Hipótese 2: Existem diferenças significativas entre os voos de médio-curso (NB) e longo-curso na Fadiga mensurada no momento inicial e no momento final.
Hipótese 3: Existe uma associação positiva entre a duração do período de serviço de voo (PSV) e os níveis de Fadiga percepcionados, no momento inicial e final do PSV.

Objetivo exploratório adicional: Existem diferenças significativas entre os valores de "1h antes do PSV" na Fadiga mensurada no momento inicial e no momento final.
Método

Participantes

A amostra deste estudo (Anexo B) é constituída por um total de 51 tripulantes de cabine, 64,7% do gênero feminino (n=33), na faixa etária compreendida entre 22 e os 61 anos (M=35,7; DP=7,05). Na sua maioria (39,2%), indicam o Bacharelato ou frequência universitária como habilitações literárias (29,4%, 12º Ano; 27,5% Licenciatura e 3,9% Mestrado). Em média desempenham a função de tripulante de cabine há 11,34 anos (DP=7,94; Mínimo= 0,25; Máximo=42) sendo que, 94,1% referem um contrato de trabalho permanente (n=48) com a entidade empregadora. No respeitante ao equipamento voado (aviões de frota longo curso – WB; aviões de frota médio curso – NB; ambos – NW) encontram-se distribuídos conforme a figura seguinte (Figura 3).

![Figura 3: Distribuição dos participantes pelo equipamento/frota voado](image)

Relativamente a atividades físicas praticadas nos tempos livres, 35 praticam atividades físicas em média M=2,89 (DP=1,37; Mínimo=1; Máximo=6) vezes por semana (na sua maioria no ‘ginásio e ao ar livre’ e durante a ‘manhã’ respetivamente, 27,5% e 31,4%). As atividades físicas podem-se caracterizar em: aeróbias (n=19), anaeróbias (n=8) ou ambas (n=8) (Miranda, 2012). Do total amostrado, n=28 referem ter em média M=1,71 filhos e N=17 referem ser fumadores (M=9,83 cigarros/dia; DP=5,81).

Foram recolhidos dados de n=82 períodos de serviço de voo (PSV, i.e., período compreendido entre a apresentação e 30 minutos depois do parqueamento do avião no aeroporto de destino) caracterizados segundo a sua duração, hora de apresentação/término,
período de quatro dias que antecedeu o PSV realizado e equipamento voado (NB= médio-curso; WB= Longo-curso) (Tabela 1).

Tabela 1: Descrição das características do PSV voado por média e desvio-padrão

<table>
<thead>
<tr>
<th></th>
<th>Voos de NB (n=29)</th>
<th>Voos WB (n=53)</th>
<th>Total (n=82)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>DP</td>
<td>M</td>
</tr>
<tr>
<td>Duração</td>
<td>8h03</td>
<td>13h37</td>
<td>10h32</td>
</tr>
<tr>
<td>Hora de apresentação (sign-on)</td>
<td>11h15</td>
<td>5h34</td>
<td>13h24</td>
</tr>
<tr>
<td>Hora de término (sign-off)</td>
<td>16h50</td>
<td>4h48</td>
<td>10h28</td>
</tr>
<tr>
<td>Nos últimos 4 dias quantos foram folga</td>
<td>2,18</td>
<td>1,31</td>
<td>2,50</td>
</tr>
<tr>
<td>Nos últimos 4 dias quantos despertou antes da 6h00am</td>
<td>1,14</td>
<td>1,13</td>
<td>0,49</td>
</tr>
<tr>
<td>Nos últimos 4 dias quantos PSV entre 2h00 e 6h00am (circadiano)</td>
<td>0,55</td>
<td>0,78</td>
<td>0,94</td>
</tr>
<tr>
<td>Nos últimos 4 dias quantos PSV entre 23h00 e 2h00am (noturno)</td>
<td>0,34</td>
<td>0,61</td>
<td>0,91</td>
</tr>
<tr>
<td>Nos últimos 4 dias quantos esteve de assistência, reserva ou on-call</td>
<td>0,03</td>
<td>0,19</td>
<td>0,23</td>
</tr>
</tbody>
</table>

* Período durante o qual (na sua residência ou no aeroporto) o tripulante pode ser contatado para realizar um PSV.

Adicionalmente, os n=45 PSV realizados eram procedidos de uma folga de 48h (NB n=10; WB n=35) e n=37 de um novo voo (NB n=19; WB n=18).

Design

O presente estudo pode ser descrito como quantitativo (Cassell, Symon, Buehring & Johnson, 2006), explanatório (Robson, 1999), dado se pretender apontar potenciais explicações para os níveis de fadiga reportados pelos participantes e, ainda, transversal com uma aplicação em dois momentos temporais distintos num período de 24h aos mesmos participantes, e correlacional (Campbell & Stanley, 1966). Pretende-se explorar as correlações existentes entre: Fadiga; Experiências de Recuperação; Sonolência; Qualidade/Higiene do Sono; Ansiedade percepcionada; Duração do PSV; Período do dia que compreende o PSV iniciado (noturno, circadiano, ambos ou nenhum); dias de folga gozados no período de quatro
dias que antecede o PSV; PSV realizados nos últimos 4 dias que compreendem o período das 2h às 6h (24h) – Circadiano; PSV realizados nos quatro dias que antecedem o PSV atual no período compreendido entre as 23h e as 2h – Noturno; nos quatro dias que antecedem o PSV atual quantos foram de assistência, reserva ou on-call; Atividade física praticada e sua frequência. Pretende-se igualmente estudar se existem diferenças significativas entre grupos para as relações analisadas (voos de NB ou WB).

Este tipo de delineamento operacionaliza a existência de variáveis moderadoras entre as características individuais e de grupo relativamente à Fadiga subjetiva percepcionada.

Recorreu-se à metodologia por inquérito através de três questionários (Robson, 1993).

Medidas

No presente estudo utilizaram-se três questionários distintos. Um ‘Neutro’ constituído por duas secções, uma que caracteriza as características sócio-demográficas e a carga de trabalho (i.e., caracterização das exigências da escala de serviço tendo em conta os quatro dias que antecederam o PSV atual: Folgas Gozadas 24h; Despertares antes das 6h00; Períodos Circadianos e Períodos Noturnos). Outra com três escalas de mensuração (Experiências de Recuperação, Características do Trabalho e Qualidade de Sono Percebida)(Anexo C).

O questionário I ‘Momento Inicial’ é composto por seis escalas de mensuração (duas de Fadiga Subjetiva Percebida; Sonolência; Humor Percebido escala digital; Humor Percepcionado escala análoga; Ansiedade) (Anexo D). O questionário II ‘Momento Final’, além das escalas apresentadas no ‘Momento Inicial’ é composto por uma escala de mensuração do nível de exigência do voo (i.e., medida total, constituída pelo somatório de 5 componentes) (Anexo E).

A Qualidade do Sono Percepcionada de Pittsburg (PSQI) é uma escala desenvolvida por Buysse, Reynolds, Monk, Berman e Kupfer (1989), traduzida para a população pelo Instituto de Pesquisa MAPI, constituindo uma medida única, operacionalizada pela média dos 13 itens que a constituem, classificados numa rating scale de tipo Likert, de 4 pontos, em que 0 significa “Nunca”, 1 “Uma vez por semana”, 2 “Uma a duas vezes por semana”, 3 “Três ou mais vezes por semana”. Foi pedido aos participantes que classificassem o seu sono “Durante o último mês, quantas vezes teve dificuldade em dormir porque...”: e.g., “Não consegui dormir em 30 minutos”, “Não consegui respirar confortavelmente”, “Teve pesadelos” ou como “No geral como avalia a qualidade do seu sono” (de 0 “Má” a 3 “Muito boa”). A escala compreende uma avaliação (espaço temporal último mês), “A que horas foi normalmente para a cama”, “Quanto tempo, em minutos, demorou a adormecer”, “A que horas de levantou de manhã”, “Quantas horas por dia dormiu mesmo”. Utilizando a normas de cotação PSQI definidas pelos autores, o sono é avaliado em oito dimensões: “Duração”; “Distúrbios”; “Latência”; “Disfunção durante o dia, devida a sonolência”; “Eficiência”; “Qualidade geral percepção pelo próprio”; “Necessidade de medicamentos para dormir”; “Qualidade Total PSQI”. As dimensões são analisadas pelo valor mínimo = 1 (Bom) e valor máximo = 3 (Pior/Mau). A avaliação da qualidade de sono total aferida pelo inventário (“PSQI TOTAL”) é mensurada pelo somatório de todas as dimensões, onde TOTAL ≤ 5 “associado com uma boa qualidade de sono” e TOTAL ≥ 5 “associado a uma má qualidade de sono”.

Foi igualmente mensurada pela Escala de Fadiga de Samn-Perelli (Samn & Perelli, 1982), em que é pedido aos participantes que assinalassem a opção que reflete a condição “Como se encontra neste momento” numa escala tipo Likert de sete pontos, 1 “Em alerta total, claramente acordado”, 2 “Muito vivo, responsivo mas não ao meu melhor”, 3 “Bem, relativamente fresco”, 4 “Um pouco cansado, não muito fresco”, 5 “Moderadamente cansado, em baixo”, 6 “Extremamente cansado, com dificuldades em concentrar-me”, 7 “Completamente exausto, incapaz de funcionar de forma eficaz".
Escala de Sonolência de Karolinska (KSS) (Åkerstedt & Gillbert, 1990) iniciada com a afirmação “Em alerta total” (valor 1) e finalizada com “Claramente sonolento, a combater o sono” (valor 9). Os participantes indicam o valor (de 1 a 9) que melhor se adequa ao “grau de sonolência percepcionado, no momento”.

Escala de Humor – “Estado de Espírito” (Garcia-Marques, 2004), escala tipo Likert (de 1 a 9 valores). É pedido aos sujeitos que indiquem entre dois adjetivos de valência oposta (Positivo-Negativo; Triste-Contente; Descansado-Cansado; Aborrecido-Alerta; Bem-Mal; Tenso-Relaxado) a forma como se “sentem no momento”. O “Estado de espírito”, mensurado pelo somatório dos itens (1 valor extremo de valência negativa; 9 extremo de valência positiva) que compõem a escala (1 ≤ Σ ≤54) onde, um valor mais elevado indica uma maior positividade no humor.

Perfil do Estado de Humor (Profile of Mood States – POMS), desenvolvida e validada por McNair, Lorr e Droppleman (1971). Versão reduzida do POMS, adaptação portuguesa de Viana, Almeida e Santos (2001). Composta por seis pares de adjetivos/afirmações de valência oposta (Tranquilo – Tenso; Deprimido – Alegre; Bem-humorado – Furioso; Apático – Energético; Cheio de energia – Estourado; Com ideias claras – Confuso). Escala visual analógica (Bowling, 1998), os participantes indicam ao longo de uma linha horizontal (88mm) “como se sentem no momento”. O Humor é mensurado pelo somatório de todos os itens (0 ≤ Σ ≤88) onde, um valor mais elevado indica uma maior negatividade no humor.

Escala de Caracterização do Estado de Ansiedade (State-Trait Anxiety Inventory – STAI-Y1), desenvolvida por Spielberger, Gorsuch, Lushene, Vagg e Jacobs (1983) versão traduzida por Baptista (2000). Escala tipo Likert (1 “Quase nunca”; 2 “Algumas vezes”; 3 “Frequentemente”; 4 “Quase sempre”) composta por 20 afirmações (e.g., “Sinto-me calmo(a)”; “Sinto-me à vontade”, “Sinto-me contente”) em que é perguntado aos participantes “como se sente neste momento”. O somatório (0 ≤ Σ ≤88) de os valores assinalados em todos os itens (1 valência positiva e 4 negativa), constitui uma medida única de ansiedade onde um valor mais elevado indica um maior grau de ansiedade (Σ=10=“grau zero” de ansiedade percepcionada).

Nível de Exigência do Voo, desenvolvida por D’Oliveira, Oliveira e Zambujal para o presente estudo. Do tipo Likert (0 “Nada exigente”; 1 “Exigente”; 2 “Muito exigente”; 3 “Extremamente exigente”), é composta por quatro itens (“Nível geral do voo que acabou de
realizar”; “Número de passageiros”; “Duração do voo”; “Metereologia”). Mensurada pela divisão do somatório dos valores assinalados pelo número de itens (Exigência do voo = Σ/4, a avaliação considera a escala de Likert descrita).

Qualidades Métricas

Por forma a verificar o constructo das escalas de medida utilizadas procedeu-se, à análise da validade fatorial, fidelidade e sensibilidade da escala Experiências de Recuperação (Anexo F) e CIS Fadiga (Anexo G).

Validez Fatorial da Estrutura Interna das Escalas

De acordo com Marôco (2011), a estrutura relacional dos itens de cada escala foi avaliada pela Análise Fatorial Exploratória (AFE) sobre a matriz das correlações, com extração dos factores pelo método das componentes principais seguida de uma rotação Varimax. Os factores comuns retidos foram aqueles que apresentavam um eigenvalue superior a 1, em consonância com a percentagem de variância retida.

Analisou-se a validade da AFE recorrendo ao KMO (≥0,5) (Kaiser-Meyer-Olkin) e ao Teste de Esfericidade de Bartlett’s, tendo como base os critérios de classificação definidos em Pestana e Gageiro (2008) para cada uma das escalas (Tabela 2). Adicionalmente, os factores retidos extraem pelo menos 5% da variância total (Marôco, 2011).

| Tabela 2: Validez de constructo da escala Experiências de Recuperação e CIS Fadiga |
|---------------------------------|--------|--------|-----------------|---------------------------|
| Escala de medida | KMO | Classificação* | Teste Bartlett’s | Nº de dimensões extraídas após rotação varimax |
| Experiências de Recuperação (NREC) | .75 | Média | .000 | 3 |
| Fadiga (CIS) | .85 | Boa | .000 | 4 |

Fiabilidade

Para Maroço e García-Marques (2006) a fiabilidade de uma medida refere a capacidade desta ser *consistente*, o que pressupõe que um instrumento de medida é fiável quando se obtêm sempre os mesmos resultados, aplicado a alvos estruturalmente iguais. Para analisar a consistência interna recorreu-se ao coeficiente Alpha de Cronbach, que para testes de resposta típica de acordo com Hill e Hill (2002) deve ser superior a 0.7. A Tabela 3 resume os valores de α para cada uma das dimensões extraídas (valor de saturação > 0.5) e o α total de cada escala.

Tabela 3: Fiabilidade das dimensões factoriais da escala Experiências de Recuperação e CIS Fadiga

<table>
<thead>
<tr>
<th>Instrumento</th>
<th>Dimensões após Rotação Varimax</th>
<th>Nº Itens</th>
<th>Identificação</th>
<th>Fidelidade</th>
<th>Classificação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Saturação dos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiências</td>
<td>1. Controlo/Relaxamento</td>
<td>8</td>
<td>1,4,9,11,12,13,14,16</td>
<td>α=.86</td>
<td>Boa</td>
</tr>
<tr>
<td></td>
<td>2. Mestria</td>
<td>6</td>
<td>α=.89</td>
<td></td>
<td>Boa</td>
</tr>
<tr>
<td>Recuperação α = .87</td>
<td>3. Distanciamento Psicológico</td>
<td>2</td>
<td>3,5</td>
<td>α=.79</td>
<td>Razoável</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,6,7,8,10,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS Fadiga</td>
<td>1. Fadiga Subjetiva</td>
<td>6</td>
<td>1,4,9,12,14,18</td>
<td>α=.89</td>
<td>Boa</td>
</tr>
<tr>
<td></td>
<td>2. Concentração</td>
<td>5</td>
<td>8,11,13,17,19</td>
<td>α=.89</td>
<td>Boa</td>
</tr>
<tr>
<td></td>
<td>3. Motivação</td>
<td>4</td>
<td>5,6,15,20</td>
<td>α=.76</td>
<td>Razoável</td>
</tr>
<tr>
<td></td>
<td>4. Atividade</td>
<td>2</td>
<td>7,10</td>
<td>α=.63</td>
<td>Fraça</td>
</tr>
</tbody>
</table>

O valor de consistência α=.63, leva a exclusão da dimensão Atividade em análises futuras (Hill & Hill, 2002).
Sensibilidade

A adequação da sensibilidade discriminatória das dimensões verificou-se através da constatação da normalidade da distribuição, com base no teste de Kolmogorov-Smirnov (P_{value}<0.05) (Marôco, 2011).

Define-se através do Coeficiente de Curtose (Ku/SD_{Ku}) e Coeficiente de Assimetria (Sk/SD_{Sk}) o tipo de distribuição das dimensões analisadas (Marôco, 2011). Os valores encontram-se explanados na Tabela 4.

Tabela 4: Parâmetros de Normalidade das dimensões fatoriais da escala Experiências de Recuperação e CIS

<table>
<thead>
<tr>
<th>Dimensões</th>
<th>P_{value}</th>
<th>Sk</th>
<th>SD_{Sk}</th>
<th>SK/SD_{Sk}</th>
<th>Ku</th>
<th>SD_{Ku}</th>
<th>Ku/SD_{Ku}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlo/Relaxamento</td>
<td>.002</td>
<td>-.380</td>
<td>.269</td>
<td>1.42</td>
<td>.370</td>
<td>.532</td>
<td>.695</td>
</tr>
<tr>
<td>Mestria</td>
<td>.001</td>
<td>-1.169</td>
<td>.269</td>
<td>-4.35</td>
<td>2,655</td>
<td>.532</td>
<td>4.99</td>
</tr>
<tr>
<td>Distanciamento</td>
<td>.000</td>
<td>-.118</td>
<td>.269</td>
<td>-.44</td>
<td>-.875</td>
<td>.532</td>
<td>-1.644</td>
</tr>
<tr>
<td>Fadiga Subjetiva</td>
<td>.000</td>
<td>.397</td>
<td>.266</td>
<td>1.49</td>
<td>-.363</td>
<td>.526</td>
<td>-.69</td>
</tr>
<tr>
<td>Concentração</td>
<td>.000</td>
<td>.646</td>
<td>.266</td>
<td>2.42</td>
<td>.403</td>
<td>.526</td>
<td>.766</td>
</tr>
<tr>
<td>Motivação</td>
<td>.000</td>
<td>.168</td>
<td>.266</td>
<td>.63</td>
<td>-.348</td>
<td>.526</td>
<td>-.66</td>
</tr>
</tbody>
</table>

*Teste Kolmogorov-Smirnov

As dimensões estudadas não apresentam uma distribuição normal (P_{value}<0.05). A dimensão “Mestria” apresenta uma distribuição leptocúrtica e as restantes uma distribuição mesocúrtica. As dimensões “Controlo/Relaxamento”, “Distanciamento”, “Fadiga Subjetiva” e “Motivação”, apresentam uma distribuição simétrica. Adicionalmente, “Concentração” uma distribuição assimétrica positiva, e “Mestria” assimétrica negativa.

No entanto, o valor de assimetria (Sk) de cada uma das dimensões não ultrapassa o valor 3 e o valor do achatamento (Ku) não ultrapassa o valor 7. Irá ser possível prosseguir com a análise, de acordo com o critério anterior, a distribuição de cada dimensão é considerada normal (Marôco, 2011).
Procedimento

Os dados foram recolhidos presencialmente através de questionários em formato papel entregues em mão, tendo por base uma amostragem aleatória por conveniência (Hill & Hill, 2002). Os participantes foram distribuídos aleatoriamente pela entidade empregadora para constituir a tripulação de determinado voo, médio ou longo-curso. Foi explicado o objectivo do estudo aquando o briefing (1h antes da hora prevista de decolagem do voo) e pedido para participarem voluntariamente. Os dados foram recolhidos em três momentos, recorrendo a três instrumentos distintos na sua construção, constituindo o protocolo de recolha (Tabela 5). Em todos os questionários foi garantido o total anonimato dos participantes.

Tabela 5: Protocolo de recolha de dados

<table>
<thead>
<tr>
<th>Momento de Avaliação</th>
<th>Medida</th>
<th>Instrumento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durante o PSV ou descanso no local de estadia</td>
<td>• Dados demográficos;</td>
<td>Questionário Neutro</td>
</tr>
<tr>
<td></td>
<td>• Dados de caraterização da escala de voo;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Experiências de Recuperação (NREC);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Qualidade do Sono Percepcionada Pittsburg (PSQI);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fadiga (CIS);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fadiga Samn-Perelli;</td>
<td></td>
</tr>
<tr>
<td>Início do PSV (briefing)</td>
<td>• Sonolência Karolinska (KSS);</td>
<td>Momento Inicial</td>
</tr>
<tr>
<td></td>
<td>• Humor — "Estado de Espírito";</td>
<td>(MIA)</td>
</tr>
<tr>
<td></td>
<td>• Perfil do Estado de Humor (POMS – versão reduzida);</td>
<td>Questionário I</td>
</tr>
<tr>
<td></td>
<td>• Caracterização do Estado de ansiedade (STAI-Y1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nível de exigência do voo;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fadiga (CIS);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fadiga Samn-Perelli;</td>
<td></td>
</tr>
<tr>
<td>Fim do Voo ou PSV</td>
<td>• Sonolência Karolinska (KSS);</td>
<td>Momento Final (MFA)</td>
</tr>
<tr>
<td></td>
<td>• Humor — "Estado de Espírito";</td>
<td>Questionário II</td>
</tr>
<tr>
<td></td>
<td>• Perfil do Estado de Humor (POMS – versão reduzida);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Caracterização do Estado de ansiedade (STAI-Y1)</td>
<td></td>
</tr>
</tbody>
</table>
Resultados

Por forma a proceder à análise dos dados obtidos recorreu-se ao programa estatístico *Statistical Package for the Social Sciences* (IBM SPSS) (v.20.0) *for Windows* para a criação da base de dados e respetiva análise pela utilização de diferentes testes e medidas estatísticas.
Descrição geral dos resultados

Fazendo uma análise geral da estatística descritiva dos dados, na Tabela 6 apresentam-se as médias, os desvios-padrão e os valores mínimos e máximos dos resultados das medidas em estudo.

Tabela 6: Estatística Descritiva das variáveis em estudo

<table>
<thead>
<tr>
<th>Instrumento</th>
<th>Dimensões</th>
<th>N</th>
<th>Mínimo</th>
<th>Máximo</th>
<th>M</th>
<th>DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS Fadiga (MIA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.CIS1 Fadiga Subjetiva</td>
<td>82</td>
<td>1</td>
<td>4.17</td>
<td>2.53</td>
<td>.74</td>
<td></td>
</tr>
<tr>
<td>2.CIS1 Concentração</td>
<td>82</td>
<td>1</td>
<td>4.20</td>
<td>2.42</td>
<td>.72</td>
<td></td>
</tr>
<tr>
<td>3.CIS1 Motivação</td>
<td>82</td>
<td>1</td>
<td>4</td>
<td>2.43</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>1.CIS2 Fadiga Subjetiva</td>
<td>81</td>
<td>2</td>
<td>5</td>
<td>3.88</td>
<td>.72</td>
<td></td>
</tr>
<tr>
<td>CIS Fadiga (MFA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.CIS2 Concentração</td>
<td>81</td>
<td>1.20</td>
<td>5</td>
<td>3.31</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>3.CIS2 Motivação</td>
<td>81</td>
<td>1.75</td>
<td>5</td>
<td>3.50</td>
<td>.84</td>
<td></td>
</tr>
<tr>
<td>Fadiga Sann-Perelli1 (MIA)</td>
<td>82</td>
<td>1</td>
<td>6</td>
<td>2.72</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Fadiga Sann-Perelli2 (MFA)</td>
<td>81</td>
<td>2</td>
<td>8</td>
<td>5.06</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Sonolência KSS1 (MIA)</td>
<td>82</td>
<td>1</td>
<td>9</td>
<td>3.89</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>Sonolência KSS2 (MFA)</td>
<td>81</td>
<td>2</td>
<td>9</td>
<td>6.81</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Humor MIAPOMSTotal</td>
<td>80</td>
<td>14</td>
<td>54</td>
<td>37.99</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>Humor MFAPOMSTotal</td>
<td>79</td>
<td>14</td>
<td>48</td>
<td>28.33</td>
<td>7.81</td>
<td></td>
</tr>
<tr>
<td>Humor MIAPOMSAnalogtotal</td>
<td>82</td>
<td>1.17</td>
<td>75.33</td>
<td>28.09</td>
<td>15.32</td>
<td></td>
</tr>
<tr>
<td>Humor MFAPOMSAnalogtotal</td>
<td>79</td>
<td>9.50</td>
<td>74.17</td>
<td>46.03</td>
<td>15.44</td>
<td></td>
</tr>
<tr>
<td>Ansiedade MIAANXIETYtotal</td>
<td>79</td>
<td>20</td>
<td>51</td>
<td>34.49</td>
<td>7.36</td>
<td></td>
</tr>
<tr>
<td>Ansiedade MIAANXIETYtotal</td>
<td>79</td>
<td>23</td>
<td>71</td>
<td>42.52</td>
<td>9.63</td>
<td></td>
</tr>
<tr>
<td>PSQI TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exigência do Voo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFAACTVOOGERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiências de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.Controlo/Relaxamento</td>
<td>80</td>
<td>1.88</td>
<td>4.38</td>
<td>3.31</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>2.Mestria</td>
<td>80</td>
<td>1</td>
<td>5</td>
<td>3.73</td>
<td>.76</td>
<td></td>
</tr>
<tr>
<td>3.Distanciamento Psicológico</td>
<td>80</td>
<td>1</td>
<td>5</td>
<td>3.06</td>
<td>1.07</td>
<td></td>
</tr>
</tbody>
</table>
Teste de hipóteses

Por forma a estudar a direção, a valência e a intensidade das relações entre as variáveis (Pestana & Gageiro, 2008), procedeu-se ao cálculo do coeficiente de correlação de Pearson como medida de associação linear entre variáveis quantitativas. O valores das correlações variam entre [-1; +1[, valores mais próximos de |1|, indicam uma associação mais forte entre as variáveis. Contudo, se o coeficiente de correlação apresentar um valor zero \(r = 0 \), considera-se ausência de relação linear entre as variáveis, podendo existir outro tipo de relação que não seja linear. Se o coeficiente de correlação apresentar valores positivos, considera-se que as variáveis variam no mesmo sentido; se o coeficiente for negativo, considera-se que variam em sentido contrário (Marôco, 2011). Além disso, apresenta-se a percentagem da variação de uma variável que é explicada pela outra, coeficiente de determinação \(R^2 \) (Pestana & Gageiro, 2008).

Análise correlações entre o Momento Inicial e o Momento Final

De um modo geral verifica-se que não existem correlações altas ou muito altas (Pestana & Gageiro, 2008) entre as variáveis medidas comumente nos dois momentos (Tabela 7). Na escala Fadiga (CIS), existe uma relação moderada positiva entre a dimensão “Motivação” \(r = .44; \ p = .00 \) entre o momento inicial e final. A motivação subjetiva sentida no primeiro momento explica 19,36% da variação \(R^2 \) da “Motivação” percepcionada no final do PSV. Os tripulantes de cabine que apresentam uma maior motivação para o trabalho no início do voo, apresentam maior motivação para com o trabalho no final do mesmo. A “Fadiga Subjetiva” mensurada no momento inicial não apresenta uma associação linear com a mensurada no momento final \(r = .079 \). Os tripulantes que reportam um maior nível de fadiga subjetiva no início do PSV não apresentam necessariamente um maior nível no final do PSV.

As escalas de “Sonolência” \(r = .324; \ p = .003 \), Fadiga “Samn-Perelli” \(r = .267; \ p = .016 \), “Estado de Humor” (POMSAnalogTotal) \(r = .227; \ p = .044 \) e “Ansiedade” (ANXIETYTotal) \(r = .379; \ p = .001 \), apresentam uma associação positiva fraca entre os dois momentos de mensuração. A mensuração de níveis elevados de uma medida subjetiva não está associada a níveis elevados da mesma no momento final. O “Estado de Espírito” (POMSTotal) \(r = .195; \ p = .085 \) não apresenta uma associação linear entre a mesma medida no momento final.
Análise correlações entre as medidas no Momento Inicial

Pela análise das diferentes medidas com as dimensões de Fadiga (CIS) mensuradas no momento inicial (Tabela 8). Constata-se uma associação linear positiva moderada entre a escala de Fadiga Samn-Perelli, a “Fadiga Subjetiva” ($r=.574; p=.000; R^2=32,95\%$) e “Concentração” ($r=.510; p=.000; R^2=26,01\%$), e uma associação positiva fraca com a “Motivação” ($r=.327; p=.003; R^2=10,69\%$). Quanto maior o nível de fadiga reportada pelos tripulantes numa escala maior o nível reportado na outra.

Relativamente à variável Sonolência (KSS) estabelece uma correlação positiva moderada com a “Fadiga Subjetiva” ($r=.579; p=.000; R^2=33,52\%$). Neste sentido, quando maior o grau de sonolência no momento inicial do PSV, maior o nível de fadiga reportado e menor a “Concentração” relativa à tarefa ($r=.496; p=.000; R^2=24,60\%$). A sonolência reportada explica 69,93% da variação da variável Fadiga “Samn-Perelli” ($r=.812; p=.000$), numa associação alta positiva. Um grau elevado de sonolência está associado a um “Estado de Espírito” ($r=.647; p=.000; R^2=41,86\%$) e “Humor POMS” ($r=.613; p=.000; R^2=37,58\%$) progressivamente negativo. A mesma associação é encontrada entre “Fadiga Samn-Perelli”, “Estado de Espírito” ($r=.732; p=.000; R^2=53,58\%$) e “Humor POMS” ($r=.729; p=.000; R^2=53,14\%$).

As medidas de estado de humor, “Estado de Espírito” (MIA/MFAPOMSTOTAL) e “Humor POMS” (MIA/MFAPOMSAnalognetatotal), apresentam entre si uma correlação próxima de 1 (valor absoluto) nos dois momentos de mensuração ($r=.878$ e $r=-.902$, respectivamente; $p=.000$; a correlação apresenta um valor negativo porque a mensuração tem uma valência oposta (um valor mais elevado numa corresponde a menor valor da outra), medindo o mesmo constructo em polos opostos definidos pela operacionalização das escalas (humor), pelo que em análises futuras, só a variável “Humor POMS” será incluída por apresentar maior sensibilidade discriminatória.

A variável Ansiedade ($STAI-YI – MIAAXIETYtotal$) estabelece: com a dimensão “Fadiga Subjetiva” uma associação moderada positiva ($r=.523; p=.000; R^2=27,35\%$), onde níveis mais elevados de fadiga estão associados a uma maior percepção do tripulante de “sentir-se ansioso”. A mesma relação estabelece-se com a “Fadiga Samn-Perelli” ($r=.44; p=.000; R^2=19,36\%$). O estado “Humor POMS” percepcionado e a Ansiedade, estão positiva e moderadamente associadas ($r=.513; p=.000; R^2=26,32\%$).
Na escala Experiências de Recuperação verifica-se que a variável Controlo/Relaxamento estabelece uma associação negativa moderada com: a “Fadiga Subjetiva” \(r = -.416; p = .000; R^2 = 17.31\% \), sugerindo que quanto mais e maior controlo sobre as atividades que promovem o relaxamento o tripulante de cabine experienciar, menos “Fadiga Subjetiva” irá reportar; a fadiga associada à “Motivação” \(r = -.424; p = .000; R^2 = 17.98\% \), como tal, podemos compreender que quanto mais atividade de relaxamento os indivíduos desenvolverem, menor será fadiga associada à necessidade de motivação no desempenho da função; a Ansiedade \(r = -.443; p = .000; R^2 = 19.62\% \) o que indica que quanto mais atividades de relaxamento e controlo percepcionado menor será a ansiedade generalizada sentida. As outras duas dimensões de Recuperação “Distanciamento Psicológico” e “Mestria”, não apresentam associações moderadas (a muito altas) com as restantes variáveis em estudo.

Das dimensões da Escala de Qualidade do Sono de Pittsburg, apenas a variável “avaliação da qualidade de sono total – PSQI TOTAL” estabelece uma correlação positiva fraca com a “Fadiga Subjetiva” \(r = .336; p = .000; R^2 = 11.29\% \), isto é, quanto pior o sono do tripulante menos descansado está no momento da apresentação para o PSV.

Análise correlações entre as medidas no Momento Final

Relativamente ao momento final de análise de medidas repetidas observam-se as mesmas interações entre as variáveis em termos de intensidade de correlação e o mesmo sentido de variação (Tabela 9). Importa no entanto referenciar a existência de uma associação positiva alta entre a “Fadiga Samn-Perelli” com a “Fadiga Subjetiva” (CIS2) \(r = .784; p = .000; R^2 = 61.47\% \) e com a Sonolência (KSS) \(r = .722; p = .000; R^2 = 52.13\% \); uma associação positiva moderada com: fadiga associada à “Concentração” \(r = .584; p = .000; R^2 = 34.11\% \), a dimensão de fadiga “Motivação” \(r = .629; p = .000; R^2 = 39.56\% \) e o “Humor POMS” \(r = .649; p = .000; R^2 = 42.12\% \).

No que diz respeito à Escala Experiências de Recuperação, a variável “Distanciamento Psicológico” apresenta uma correlação negativa fraca com as dimensões de fadiga “Concentração” \(r = -.320; p = .000; R^2 = 10.24\% \) e “Motivação” \(r = -.296; p = .008; R^2 = 8.76\% \), o que sugere que melhores experiências de recuperação associadas ao
“Distanciamento Psicológico” das preocupações e emoções relativas ao trabalho está associado, a menor fadiga associada à concentração e à motivação.

Relativamente à variável “Mestria”, quanto maior a oportunidade de distração e aprendizagem noutros domínios não relacionados com a função de tripulante, menor a fadiga (“Concentração”; “Motivação”) percepcionada no final do PSV. Observa-se uma associação negativa fraca entre a primeira com a “Concentração” (r=-.339; p=.002; $R^2=11,49\%$) e a “Motivação” (r=-.396; p=.000; $R^2=15,68\%$).

O nível de “Exigência Geral do Voo” (MFACTVOGERAL) está associado de forma fraca e positiva com as dimensões da fadiga subjetiva mensurada, “Fadiga Subjetiva” (r=.327; p=.004; $R^2=10,69\%$), “Concentração” (r=.329; p=.003; $R^2=10,82\%$) e “Motivação” (r=.295; p=.009; $R^2=8,70\%$), onde uma maior exigência percepcionada corresponde a maior fadiga reportada. Estabelece a mesma relação com o “Humor POMS” (MFAPOMSAnalogtotal) (r=.308; p=.000; $R^2=9,49\%$), em que uma maior exigência afeta negativamente o humor do tripulante.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Fadiga Subjetiva C1S1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(2) Concentração C1S1</td>
<td>1</td>
<td>.667**</td>
<td></td>
</tr>
<tr>
<td>(3) Motivação C1S1</td>
<td>.562**</td>
<td>.467**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(4) Sonolência KSS1</td>
<td>.579**</td>
<td>.496**</td>
<td>.238*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(5) Fadiga Sono-Perebili</td>
<td>.574**</td>
<td>.510**</td>
<td>.327**</td>
<td>.812**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(6) MIA POMS Total</td>
<td>.692**</td>
<td>.507**</td>
<td>.419**</td>
<td>.647**</td>
<td>.732**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(7) MIA POMS Analog total</td>
<td>.643**</td>
<td>.509**</td>
<td>.413**</td>
<td>.613**</td>
<td>.729**</td>
<td>.878**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) MIA ANXIETY Total</td>
<td>.523**</td>
<td>.358**</td>
<td>.364**</td>
<td>.285**</td>
<td>.440**</td>
<td>.502**</td>
<td>.513**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(9) Fadiga Subjetiva C1S2	.079	.136	.228	.129	.213	.052	.202	.083	.1							
(10) Concentração C1S2	.083	.247**	.265**	.090	.110	.096	.065	.076**	1							
(11) Motivação C1S2	.037	.209**	.440**	.091	.140	.021	.083	.126	.786**	.811**	1					
(12) Sonolência KSS2	.215	.343**	.197	.324**	.302**	.211	.200	.114	.659**	.508**	.515**	1				
(13) Fadiga Sono-Perebili2	.132	.273**	.209	.190	.267**	.172	.149	.317	.784**	.584**	.629**	.722**	1			
(14) MIA POMS Total	.092	.173**	.251**	.150	.239**	.195	.219	.225	.769**	.658**	.672**	.530**	.657**	1		
(15) MIA POMS Analog total	.115	.236**	.248**	.199	.235**	.208	.237**	.208	.787**	.682**	.682**	.619**	.649**	.902**	1	
(16) MIA ANXIETY Total	.040	.105	.233**	.052	.084	.062	.379**	.491**	.493**	.524**	.398**	.642**	.633**	1		

Notas: * p < .05; ** p < .01
Tabela 8: Associação entre as variáveis independentes e as medidas de Fadiga no Momento Inicial (MIA)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) MIAPSV</td>
<td></td>
</tr>
<tr>
<td>(2) Equipamento (NB;WB)</td>
<td>.660**</td>
<td></td>
</tr>
<tr>
<td>(3) 1h antes PSV</td>
<td>.075</td>
<td>.062</td>
<td></td>
</tr>
<tr>
<td>(4) PSQI TOTAL</td>
<td>-.301**</td>
<td>-.711*</td>
<td>.082</td>
<td></td>
</tr>
<tr>
<td>(5) Controle/Relaxamento</td>
<td>-.002</td>
<td>.017</td>
<td>-.102</td>
<td>-.162</td>
<td></td>
</tr>
<tr>
<td>(6) Mestra</td>
<td>-.138</td>
<td>-.117</td>
<td>.016</td>
<td>-.146</td>
<td>.370**</td>
<td></td>
</tr>
<tr>
<td>(7) Distanciamento</td>
<td>-.197</td>
<td>.161</td>
<td>.054</td>
<td>.109</td>
<td>.171</td>
<td>.335**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psicológico</td>
<td></td>
</tr>
<tr>
<td>(8) Fadiga Subjetiva CISI</td>
<td>-.100</td>
<td>-.167</td>
<td>.135</td>
<td>.336**</td>
<td>-.416**</td>
<td>-.023</td>
<td>.191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Concentração CISI</td>
<td>-.044</td>
<td>-.194</td>
<td>.043</td>
<td>.190</td>
<td>-.313**</td>
<td>.031</td>
<td>.099</td>
<td>.607**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Motivação CISI</td>
<td>.409</td>
<td>.100</td>
<td>.039</td>
<td>.101</td>
<td>-.424**</td>
<td>-.334</td>
<td>-.013</td>
<td>.567**</td>
<td>.667**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) Sonolência KSS</td>
<td>-.126</td>
<td>-.253**</td>
<td>.053</td>
<td>.091</td>
<td>-.077</td>
<td>.136</td>
<td>.276</td>
<td>.579</td>
<td>.696**</td>
<td>.236**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) Fadiga Sono-Perecê</td>
<td>-.285</td>
<td>-.307**</td>
<td>-.047</td>
<td>.038</td>
<td>.117</td>
<td>.045</td>
<td>.222**</td>
<td>.574**</td>
<td>.510**</td>
<td>.327**</td>
<td>.812**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) MIAPOM/STotal</td>
<td>.263</td>
<td>.192**</td>
<td>.053</td>
<td>.046</td>
<td>.199</td>
<td>-.138</td>
<td>-.255**</td>
<td>-.667**</td>
<td>-.507**</td>
<td>-.419**</td>
<td>-.644**</td>
<td>-.732**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14) MIAPOM/Somatogral</td>
<td>.126</td>
<td>-.196</td>
<td>.044</td>
<td>.012</td>
<td>-.249**</td>
<td>.049</td>
<td>.119</td>
<td>.643**</td>
<td>.509**</td>
<td>.413**</td>
<td>.613**</td>
<td>.729**</td>
<td>.878**</td>
<td>.1</td>
<td></td>
</tr>
<tr>
<td>(15) MIANXIETYTotal</td>
<td>.191</td>
<td>.185</td>
<td>.147</td>
<td>.109</td>
<td>.443**</td>
<td>.133</td>
<td>-.014</td>
<td>.533**</td>
<td>.358**</td>
<td>.364**</td>
<td>.285**</td>
<td>.440**</td>
<td>.502**</td>
<td>.513**</td>
<td></td>
</tr>
</tbody>
</table>

Nota: * p < .05, ** p < .01

42
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) MIAPSV</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(2) Equipamento (NB, WB)</td>
<td>.660**</td>
<td></td>
</tr>
<tr>
<td>(3) Ih antes PSV</td>
<td>.078</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td>(4) PSQI_TOTAL</td>
<td>-1.201***</td>
<td>.271**</td>
<td>.092</td>
<td></td>
</tr>
<tr>
<td>(5) Controle/Relaxamento</td>
<td>.092</td>
<td>.017</td>
<td>.111</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>(6) Mestría</td>
<td>.128</td>
<td>.117</td>
<td>.016</td>
<td>.116</td>
<td>.370**</td>
<td></td>
</tr>
<tr>
<td>(7) Distanciamento</td>
<td></td>
<td></td>
<td>.190</td>
<td>.171</td>
<td>.535***</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Psicológico</td>
<td></td>
</tr>
<tr>
<td>(8) Fadiga Subjetiva CISO</td>
<td>.256**</td>
<td>.141</td>
<td>.160</td>
<td>.046</td>
<td>.002</td>
<td>.238**</td>
<td>.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) Concentração CISO</td>
<td>.266</td>
<td>.126</td>
<td>.020</td>
<td>.016</td>
<td>.009</td>
<td>.339***</td>
<td>.319***</td>
<td>.769**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) Motivação CISO</td>
<td>.156</td>
<td>.010</td>
<td>.117</td>
<td>.013</td>
<td>.155</td>
<td>.394**</td>
<td>.296**</td>
<td>.786**</td>
<td>.811**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) Somolência KSSI</td>
<td>.109</td>
<td>.003</td>
<td>.113</td>
<td>.020</td>
<td>.018</td>
<td>.102</td>
<td>.088</td>
<td>.659**</td>
<td>.508**</td>
<td>.518**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) Fadiga Samo-Percik2</td>
<td>.244**</td>
<td>.016</td>
<td>.058</td>
<td>.004</td>
<td>.006</td>
<td>.893</td>
<td>.079</td>
<td>.784**</td>
<td>.584**</td>
<td>.620**</td>
<td>.712**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) MFAPOMSTotal</td>
<td>.133</td>
<td>.090</td>
<td>.045</td>
<td>.156</td>
<td>.135</td>
<td>.249</td>
<td>.073</td>
<td>.767**</td>
<td>.658**</td>
<td>.676**</td>
<td>.530**</td>
<td>.665**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14) MFAPOMSsanlogstonal</td>
<td>.189</td>
<td>.121</td>
<td>.093</td>
<td>.005</td>
<td>.165</td>
<td>.133</td>
<td>.019</td>
<td>.781**</td>
<td>.682**</td>
<td>.682**</td>
<td>.619**</td>
<td>.849**</td>
<td>.902**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15) MFANXIIETYTotal</td>
<td>.008</td>
<td>.070</td>
<td>.154</td>
<td>.002</td>
<td>.259</td>
<td>.280</td>
<td>.317</td>
<td>.491**</td>
<td>.493**</td>
<td>.524**</td>
<td>.390**</td>
<td>.645**</td>
<td>.633**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16) MFACXVOCGERAL</td>
<td>.414**</td>
<td>.444**</td>
<td>.056</td>
<td>.003</td>
<td>.056</td>
<td>.898</td>
<td>.216</td>
<td>.327**</td>
<td>.329**</td>
<td>.296**</td>
<td>.035</td>
<td>.176</td>
<td>.215</td>
<td>.368**</td>
<td>.279**</td>
<td></td>
</tr>
</tbody>
</table>

Note: * p < .05; ** p < .01
Estudo de Hipóteses

Após a verificação das qualidades métricas e da análise das correlações das escalas utilizadas no presente estudo, procedeu-se à verificação das hipóteses, através de testes paramétricos para amostras independentes (Marôco, 2011).

Hipótese 1: Existem associações significativas entre a Fadiga mensurada no momento inicial e o momento final.

Tendo como base as dimensões da Escala Fadiga CIS ("Fadiga Subjetiva", "Concentração" e "Motivação"), Fadiga Samn-Perelli e Sonolência (KSS) como medidas de Fadiga.

Os resultados anteriormente apresentados no ponto 2.1 (*Análise correlações entre o Momento Inicial e o Momento Final*), permitem-nos inferir: uma associação positiva moderada entre a dimensão "Motivação" nos dois momentos \((r=.440; \ p=.000)\) e, uma associação positiva fraca \((r=.247; \ p=.026)\) na "Concentração" nos dois momentos; Por outro lado, não se observa uma associação positiva com significado estatístico na "Fadiga Subjetiva" \((r=.079; \ p=.484)\).

Na escala de Fadiga Samn-Perelli constata-se uma associação positiva fraca entre os dois momentos \((r=.267; \ p=.016)\). O mesmo observa-se na variável Sonolência (KSS) \((r=.324; \ p=.003)\).

Verifica-se pela análise da matriz de correlações (Tabela 7), que as medidas de fadiga estão associadas entre si positivamente e com significância no momento inicial. Observa-se uma associação idêntica entre as mesmas no momento final.

Para explanar a associação entre as variáveis nos dois momentos, explora-se a relação entre as dimensões da escala "Experiências de Recuperação" e as variáveis de mensuração de Fadiga.

Verificou-se que relativamente à dimensão "Controlo/relaxamento" existe no momento inicial: uma associação negativa moderada com a "Fadiga Subjetiva" \((r=-.416; \ p=.000)\) e com a "Motivação" \((r=-.424; \ p=.000)\), negativa fraca com a "Concentração" \((r=-.317; \ p=.004)\); no momento final, não se verificam associações estatisticamente significativas.
com as medidas de Fadiga. Os tripulantes que se apresentam mais descansados no início do seu período de trabalho, são os que têm mais atividades de relaxamento e têm um maior poder de decisão na escolha dessas atividades. Por outro lado, estas mesmas atividades não se apresentam associadas aos níveis de fadiga percepcionados no final do período trabalho.

Relativamente à dimensão “Mestria” no momento inicial não se verificam associações significativas com as medidas de fadiga. No momento final: observa-se uma associação negativa fraca com a “Fadiga Subjetiva” ($r = -.238; p = .034$), a “Concentração” ($r = -.339; p = .002$) e com a “Motivação” ($r = -.396; p = .000$). Maior interesse em outros domínios externos à função de tripulante, encontra-se associado a um menor nível de fadiga reportado em todas as dimensões de Fadiga (CIS) no momento final.

No que se refere à dimensão “Distanciamento Psicológico” no momento inicial contata-se uma associação positiva fraca com a Sonolência (KSS) ($r = .276; p = .013$) e com a Fadiga Samn-Perelli ($r = .222; p = .048$). No momento final, verifica-se uma associação negativa fraca com a “Concentração” ($r = -.320; p = .004$) e com a “Motivação” ($r = -.296; p = .008$). Estes resultados indicam que melhores experiências de recuperação relacionadas com o “Distanciamento Psicológico” no momento da apresentação para o desempenho da função, está associado um nível de Fadiga Samn-Perelli e Sonolência (KSS) mais baixos, potenciando igualmente níveis menores de fadiga associados à “Concentração” e “Motivação” no final do PSV.

Embora as medidas de fadiga sejam as mesmas nos dois momentos de mensuração, verifica-se a existência de associações diferenciadas pela análise das correlações com as dimensões da “Escala de Experiências de Recuperação”. As experiências de recuperação diferenciam as medidas de Fadiga em termos constructo de mensuração nos dois momentos de avaliação distintos, o que se pode exemplificar na análise das correlações da dimensão “Distanciamento Psicológico” com as mesmas.

Pela análise das associações entre os dois momentos de mensuração distintos, confirma-se H_1, ou seja, existe uma associação positiva entre a fadiga mensurada entre o momento inicial e o final. Os tripulantes mais descansados no momento de apresentação reportam um menor nível de fadiga no final do PSV.
Hipótese 2: Existem diferenças significativas entre os voos de médio-curso (NB) e longo-curso na Fadiga mensurada no momento inicial e no momento final.

A significância dos dois grupos de voo (NB e WB) sobre as variáveis de fadiga (Fadiga CIS, Fadiga Samn-Perelli e Sonolência KSS) foi avaliada com uma MANOVA, depois de validados os pressupostos de normalidade multivariada e de homogeneidade de variâncias-covariâncias (Marôco, 2011). Considerou-se um nível de significância $\alpha=.05$ e a classificação da dimensão do efeito foi feita de acordo com Marôco (2011). Através da análise da estatística do Traço de Pillai, a MANOVA identificará diferenças entre o NB e o WB relativamente a um compósito de variáveis (Marôco, 2011).

De acordo com a análise, verifica-se que o tipo de voo (NB;WB) no momento inicial (MIA), não teve um efeito significativo sobre as dimensões de Fadiga CIS respetivamente: “Fadiga Subjetiva” (NB $M=2.70 \quad DP=.80$; WB $M=2.44 \quad DP=.70$; Traço de Pillai$=1.22$; $F=2.293; \quad p=.134$), “Concentração” (NB $M=2.61 \quad DP=.84$; WB $M=2.32 \quad DP=.63$; Traço de Pillai$=1.575$; $F=3.133; \quad p=.081$) e “Motivação” (NB $M=2.53 \quad DP=.70$; WB $M=2.38 \quad DP=.69$; Traço de Pillai$=.388$; $F=.811; \quad p=.134$) (Anexo H). Tendo em conta as dimensões de Fadiga CIS, os tripulantes apresentam-se igualmente descansados no momento inicial (MIA), ou seja, na apresentação para o PSV.

Relativamente a análise do tipo de voo com as restantes medidas de fadiga (Anexo I): verificam-se diferenças estatisticamente significativas na Fadiga Samn-Perelli (Traço de Pillai$=17.544; \quad F=12.420; \quad p=.001$) e na Sonolência (KSS) (Traço de Pillai$=23.939; \quad F=5.471; \quad p=.022$) no momento inicial. Observa-se através da análise das médias dos dois grupos que: nos voos de NB os tripulantes apresentam um nível mais elevado de Fadiga Samn-Perelli percepcionado ($M=3.345; \quad DP=.221$) do que nos voos de WB ($M=2.377; \quad DP=.221$), o mesmo é notado na Sonolência (KSS) em que nos voos NB ($M=4.621; \quad DP=.388$) os tripulantes apresentam um maior nível de sonolência no momento da apresentação para o PSV quando comparados com os voos WB ($M=3.345; \quad DP=.221$).

No momento final (Anexo J), verificou-se que o tipo de voo (NB;WB) não tem um efeito significativo sobre o compósito multivariado (Traço de Pillai$=.090; \quad F=1.481; \quad p=.206$), ou seja, não existem diferenças significativas entre o tipo de voo e os níveis de Fadiga CIS, Fadiga Samn-Perelli e Sonolência (KSS) percepcionados pelos tripulantes no final do PSV.
Por forma a explorar as diferenças encontradas no momento inicial entre voos de NB e WB, analisou-se através de uma MANOVA o efeito dos dois grupos na variável “Experiências de Recuperação” (Anexo K). Seguindo o pressuposto analisado através das associações (Coeficiente de Correlação de Pearson) entre as dimensões “Controlo/Relaxamento”, “Mestria” e “Distanciamento Psicológico” e as medidas de fadiga. Em que a o “Distanciamento Psicológico” diferencia as medidas Fadiga Samn-Perelli e Sonolência (KSS) das dimensões de Fadiga CIS no momento inicial. Após análise dos resultados obtidos verifica-se que o tipo de voo (NB;WB) não tem um efeito significativo sobre o compósito multivariado (Traço de Pillai=.036; F=.935; p=.428). As experiências de recuperação experienciadas pelos tripulantes não são diferenciadas pelo tipo de voo (NB;WB).

Desta forma, uma vez que a MANOVA detectou efeitos estatisticamente significativos de tipo de voo (NB;WB) no momento inicial entre as medidas de fadiga, “Fadiga Samn-Perelli” e Sonolência (KSS), não se observaram efeitos significativos no compósito multivariado de medidas de fadiga no momento final (MFA).

Rejeita-se H₄, não se verificando diferenças significativas entre os voos de NB e WB na Fadiga mensurada pelas dimensões da escala Fadiga CIS no momento inicial (MIA) de PSV. Complementariamente não existem diferenças significativas entre os voos de NB e WB na Fadiga mensurada no momento final (MFA) do PSV.

Hipótese 3: Existe uma associação positiva entre a duração do período de serviço de voo (PSV) e os níveis de Fadiga percepcionados, no momento inicial e final do PSV.

Pela análise da matriz de correlações (Tabela 10) verificou-se que existia uma associação positiva fraca entre a “Duração do PSV” (MIAPSV) com “Fadiga Subjetiva” (CIS) ($r=.256; p=.021; R^2=6.55\%$) e a “Fadiga Samn-Perelli” ($r=.246; p=.027; R^2=6.05\%$) no momento final. Não foram observadas associações estatisticamente significativas com as outras medidas de fadiga globalmente nos dois momentos de mensuração.
Tabela 10: Associação entre a duração do PSV e as medidas de fadiga nos dois momentos (MIA;MFA)

<table>
<thead>
<tr>
<th></th>
<th>Duração do PSV (MIA/PSV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fadiga Subjetiva (CIS1)</td>
<td>-.101</td>
</tr>
<tr>
<td>Concentração (CIS1)</td>
<td>-.044</td>
</tr>
<tr>
<td>Motivação (CIS1)</td>
<td>.009</td>
</tr>
<tr>
<td>Sonolência (KSS1)</td>
<td>-.156</td>
</tr>
<tr>
<td>Fadiga Samn-Perelli1</td>
<td>-.205</td>
</tr>
<tr>
<td>Fadiga Subjetiva (CIS2)</td>
<td>.256*</td>
</tr>
<tr>
<td>Concentração (CIS2)</td>
<td>.209</td>
</tr>
<tr>
<td>Motivação (CIS2)</td>
<td>.156</td>
</tr>
<tr>
<td>Sonolência (KSS2)</td>
<td>.109</td>
</tr>
<tr>
<td>Fadiga Samn-Perelli2</td>
<td>.246*</td>
</tr>
</tbody>
</table>

* Correlação significativa para um α=0.05

Rejeita-se a H₃, a “Duração do PSV” encontra apenas uma associação positiva fraca com a “Fadiga Subjetiva” e com “Fadiga Samn-Perelli” no momento final (MFA). Não se observam associações estatisticamente significativas com as medidas de Fadiga no momento inicial (MIA), nem com as medidas de fadiga “Concentração”, “Motivação” e Sonolência (KSS) no momento final do PSV. De um modo geral o tempo-na-tarefa não estabelece uma associação positiva com a fadiga percecionada pelos tripulantes no final do PSV, nos níveis de sonolência e na fadiga associada à concentração e motivação no desempenho da tarefa.

De forma exploratória procedeu-se a avaliação das diferenças entre as médias dos dois grupos (NB;WB) através do teste *t Para Médias de Amostras Independentes* (Pestana & Gajeiro, 2008) (*n*=82; considera-se que os grupos têm uma distribuição normal) (Anexo L). Verifica-se a existência de diferenças entre as médias nos dois grupos relativamente à “Duração do PSV”, respetivamente NB *M=*8h02 (*DP*=1h37) e WB *M=*10h31 (*DP*=1h12). Estes resultados são consistentes com a rejeição de H₂ e H₃, ou seja, embora existam diferenças entre a “duração do PSV” entre o NB e o WB. Estas diferenças não se denotam quando comparados os dois grupos com as medidas de mensuração de Fadiga no momento final do PSV (MFA).
Objetivo exploratório adicional: Existem diferenças significativas entre os valores de “1h antes do PSV” na Fadiga mensurada no momento inicial e no momento final.

Com o objetivo de explicar as relações estatísticas encontradas entre as variáveis em estudo, operacionalizou-se uma nova variável “1h antes do PSV”, com base na hora da apresentação para o PSV e na hora do seu término, tendo em conta o ritmo circadiano e o ciclo dia-noite. A variável assume o valor: “Circadiano” – quando 1h antes da apresentação para PSV engloba o período compreendido entre as 2h e as 6h da manhã (hora local de Lisboa – LCL) ou quando o tripulante teve o seu despertar neste período (assumindo numa medida normalizada, que o tripulante desperta no mínimo 1h antes do momento da apresentação para o PSV); “Noturno” – quando o voo compreende no seu todo ou em parte o período das 23h às 2h LCL; “Ambos” – quando o voo compreende no seu todo o período das 23h às 6h LCL; “Nenhum” – quando o voo no seu todo ou em parte não compreende o período entre as 23h e as 6h LCL.

Recorrendo ao teste estatístico MANOVA, analisa-se o efeito das categorias de “1h antes do PSV” na medida CIS Fadiga no momento inicial (Anexo M), consta-se um efeito significativo dos valores no compósito multivariado (Traco de Pillai=.256; F=1.797; p=.05). Verifica-se que existe um efeito significativo (p<.05) na dimensão “Fadiga Subjetiva” (p=.021) e “Concentração” (p=.041). Pela análise de médias por valor mensurado no momento inicial: são os tripulantes que despertam no período “Circadiano” que em média apresentam o maior nível de “Fadiga Subjetiva” (M=2,931; DP=.203) e de fadiga relacionada com a “Concentração” (M=2,931; DP=.203) no momento da apresentação para o PSV; seguindo-se pelo período “Nenhum” onde apresentam valores médios de “Fadiga Subjetiva” (M=2,626; DP=.131) e de fadiga relacionada com a “Concentração” (M=2,538; DP=.129) aproximados.

Por forma a comparar as diferenças entre as categorias de “1h antes do PSV” no momento inicial, procede-se a uma comparação de pares de médias utilizando o teste Post-hoc Scheffé por ser considerado o mais adequado para um pequeno número de comparações (Marôco, 2011) (Anexo N). Para um nível de significância 0.031 (p<.05) associado ao teste e pelo intervalo de confiança a 95% não conter o valor zero (Pestana & Gageiro, 2008), existem diferenças entre os valores “Circadiano” e “Noturno”, pela comparação de médias, os tripulantes que despertaram no período “Circadiano” têm em média 0.9491 (2.9306-1.9815) mais “Fadiga Subjetiva” que os tripulantes cujo voo compreendia o período “Noturno”. Não
se verificam diferenças significativas relativamente à dimensão de Fadiga CIS “Concentração”.

Analisou-se igualmente (MANOVA), o efeito das categorias de “1h antes do PSV” nas medidas Fadiga Samn-Perelli1 e Sonolência (KSS1) no momento inicial (Anexo O). Observou-se um efeito significativo dos valores desta no compósito multivariado (Traço de Pillai=.175; F=2.496; p=.025). Existindo diferenças significativas entre as categorias de “1h antes do PSV” para a medida Fadiga Samn-Perelli1 (p=.003) e Sonolência (KSS1) (p=.006). Consta-se pela análise de médias por valor mensurado, que no momento inicial são os tripulantes que despertam no período “Circadiano” que em média apresentam o maior nível de Fadiga Samn-Perelli1 (M=3.833; DP=.585) e de Sonolência (KSS1) (M=5.583; DP=.585) no momento da apresentação para o PSV. Os tripulantes classificados no valor “Circadiano” relatam em média que se encontram “Um pouco cansado, não muito fresco” no MIA (escala Fadiga Samn-Perelli1) e “mais sonolentos do que alerta” (KSS1).

Especificamente na Fadiga Samn-Perelli1, no teste Post-hoc Scheffé para um nível de significância 0.009 (p<.05) e pelo intervalo de confiança a 95% não conter o valor zero, existem diferenças significativas entre os valores “Circadiano” e “Noturno”, isto é, pela comparação de médias os tripulantes que despertaram no período “Circadiano” têm em média 1.833 (3.833-2.0) mais “Fadiga Samn-Perelli1” que os tripulantes cujo voo compreendia o período “Noturno”. Para um p=.012 (intervalo de confiança a 95% não conter o valor zero) existem diferenças entre os valores “Circadiano” e “Ambos”, os tripulantes que despertaram no período “Circadiano” têm em média 1.365 (3.833-2.469) mais “Fadiga Samn-Perelli1” que os tripulantes cujo voo compreendia “Ambos” os períodos (i.e., engloba o período noturno e circadiano).

Quando analisada a variável Sonolência (KSS1), para um p=.018 no teste Post-hoc Scheffé (intervalo de confiança a 95% não conter o valor zero) existem diferenças significativas entre os valores “Circadiano” e “Noturno”, pela comparação de médias os tripulantes que despertaram no período “Circadiano” têm em média 2.917 (5.583-2.667) mais Sonolência (KSS1) que os tripulantes cujo voo compreendia o período “Noturno”. Para um p=.029 (intervalo de confiança a 95% não conter o valor zero) existem diferenças entre os valores “Circadiano” e “Ambos”, ou seja, pela comparação de médias os tripulantes que despertaram no período “Circadiano” têm em média 2.115 (5.583-3.469) mais KSS que os tripulantes cujo voo compreendia “Ambos” os períodos no momento inicial (MIA).
No momento final (MFA) os resultados do teste estatístico MANOVA demonstram um efeito significativo dos valores de “1h antes do PSV” no compósito multivariado CIS Fadiga (Traço de Pillai=.275; F=1.915; p=.034) (Anexo P). Observa-se um efeito significativo (p=.05) na dimensão “Fadiga Subjetiva CIS2” (p=.048). A análise de médias por valor indica-nos que é nos voos que comprendem período “Noturno” que em média os tripulantes percepcionam um maior nível de “Fadiga Subjetiva CIS2” (M=4.295; DP=.232), seguidos pelos voos que incluem “Ambos” os períodos (M=3.995; DP=.125). Através do teste Post-hoc Scheffé para um nível de significância p=.05 e pelo intervalo de confiança a 95% não conter o valor zero, verificamos que não existem diferenças significativas entre os valores de “1h antes do PSV” e a “Fadiga Subjetiva CIS2” (p>.05; intervalo confiança 95% inclui zero). Embora exista um efeito das categorias de “1h antes do PSV” nas dimensões CIS Fadiga, estes não são estatisticamente significativos para se inferir uma diferenciação.

Adicionalmente pela análise dos resultados obtidos através do teste estatístico MANOVA, não se observa a existência de um efeito significativo dos valores de “1h antes do PSV” no compósito multivariado medidas de fadiga Sonolência (KSS2) e Fadiga Samn-Perelli2 (Traço de Pillai=.065; F=.861; p=.525) no momento final do PSV (MFA) (Anexo Q).

Explanatoriamente observou-se através do teste One-Way ANOVA se as categorias da variável “1h antes do PSV” são diferenciadas pelas médias de PSV efetuado (MIAPSV) (Pestana & Gageiro, 2008). Cumpridos os pressupostos de normalidade e de simetria das distribuições, o teste F com Sig. =.000 (Anexo R), permite afirmar que para pelo menos uma categoria da variável “1h antes do PSV” as médias de PSV são diferentes. Para um p =.000 no teste Post-hoc Scheffé (intervalo de confiança a 95% não conter o valor zero), verifica-se que o PSV nos voos que comprendem o período “Circadiano” tem em média menos 3h42 que PSV dos voos que incluem o período “Noturno”; 2h23 menos para os que incluem “Ambos” (p=.000) e 1h51 menos para os que incluem “Nenhuma” (p=.009). Na tabela seguinte (Tabela 11) são apresentadas as médias de PSV para cada categoria da variável “1h antes do PSV”.

51
Tabela 11: Diferença entre médias de duração do PSV e as categorias da variável “1h antes do PSV”

<table>
<thead>
<tr>
<th>1h antes PSV</th>
<th>N</th>
<th>Categorias α = 0.05 Teste Scheffé</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>7:39:10,00</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>9:30:10,34</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>10:03:07,50</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>11:21:40,00</td>
</tr>
<tr>
<td>Sig.</td>
<td>1,00</td>
<td>0,805</td>
</tr>
</tbody>
</table>

Focalizando o objetivo exploratório, existe um efeito estatisticamente significativo entre as categorias da variável “1h antes do PSV” e a dimensão “Fadiga Subjetiva CIS1” (escala CIS Fadiga), a medida Fadiga Sann-Pereili e a Sonolência (KSS1) no momento inicial (MIA). Contudo são os tripulantes cujos voos e/ou despertar incluem o período “Circadiano” que reportam um maior nível de fadiga percepcionada no momento inicial do PSV (apresentação para o trabalho). No momento final, existe um efeito significativo da mesma variável em relação à dimensão “Fadiga Subjetiva CIS2”, pela comparação de médias verifica-se que é na categoria “Noturno” que os maiores níveis de “Fadiga Subjetiva CIS2” são reportados. Quando comparadas as médias de duração de PSV por categoria da variável “1h antes do PSV” (Tabela 11), com as associações da variável MIAPSV (Tabela 10) e as medidas de fadiga, existe uma correspondência na observação dos resultados obtidos, isto é, maior nível de “Fadiga Subjetiva” e “Fadiga Sann-Pereili” percepcionada para as categorias de voo “Noturno” e “Ambos” – por serem aquelas em que se verifica em média uma maior duração de PSV (11h21 e 10h03, respectivamente).

Os resultados obtidos na correlação das dimensões da escala “Experiências de Recuperação” e as medidas de fadiga mensuradas nomeadamente: “Controlo/Relaxamento” correlacionado significativamente com a “Fadiga Subjetiva CIS1” e a “Motivação CIS1”; “Distanciamento Psicológico” correlacionado significativamente com “Fadiga Sann-Pereili”, Sonolência (KSS1), “Concentração CIS2” e “Motivação CIS2”; “Mestria” com a “Concentração CIS2” e “Motivação CIS2”). Torna-se pertinente explorar se existe um efeito significativo das categorias da variável “1h hora antes do PSV” no compósito multivariado “Experiências de Recuperação”. De acordo com os resultados (Anexo S), não se observa um efeito significativamente estatístico, os tripulantes que realizam voos categorizados por “1h
antes do PSV”, não se diferenciam pela recuperação experienciada (ANOVA; Traço de Pillai=.053; F=.455; p=.903). Comprova-se a independência dos efeitos encontrados das categorias de “1h antes do PSV” nas medidas de fadiga, relativamente às dimensões da escala “Experiências de Recuperação”.

Com o objetivo de clarificar os resultados obtidos através das associações entre variáveis recorreu-se ao Modelo de Regressão Linear Múltipla Stepwise (MRLM) para averiguar qual o contributo das variáveis independentes nas diferentes medidas de Fadiga. A MRLM permite-nos analisar a relação entre uma variável dependente e um conjunto de variáveis independentes (Pestana & Gageiro, 2008). Pelo enquadramento teórico permite-se inferir que a escala “Fadiga Samn-Perelli” tem sido considerada como a mais robusta e a mais sensível medida de Fadiga Subjetiva nos tripulantes de cabine (e.g., Balkin et al., 2004; ICAO, 2011; UK Civil Aviation Authority – CAA, 2007). Pretende-se então predizer os níveis da medida “Fadiga Samn-Perelli2” (momento final – MFA) usando como previsores as categorias da variável “1h antes do PSV”, duração do PSV (MIAPSV), as dimensões da escala “Experiências de Recuperação”, a Sonolência (KSS1) e a “Fadiga Samn-Perelli1” (multicolinearidade VIF<5) (Anexo T). No modelo 1, considerando um valor α de 0.05 para introduzir variáveis e um α de 0.1 para eliminar, identifica-se que os níveis de “Fadiga Samn-Perelli1” são preditores dos níveis de “Fadiga Samn-Perelli2”, ou seja, os tripulantes que se apresentam mais descansados no MIA são os que apresentam uma menor percepção de fadiga no momento MFA (p=.014; $R^2=.064$). No modelo 2, constata-se que a duração de MFAPSV é preditora dos níveis de “Fadiga Samn-Perelli2”, ou seja, quanto maior a duração do PSV maior a percepção de fadiga no momento MFA (p=.005; $R^2=.145$). Os resultados obtidos pela MRLM são congruentes com os observados nas análises anteriores.

De maneira a predizer os níveis da medida “Fadiga Samn-Perelli1” (momento inicial – MIA) usaram-se como previsores as categorias da variável “1h antes do PSV”, duração do PSV (MIAPSV) e as dimensões da escala “Experiências de Recuperação” (multicolinearidade VIF<5) (Anexo U). No modelo 1, considerando um valor α de 0.05 para introduzir variáveis e um α de 0.1 para eliminar, identifica-se que a dimensão “Distanciamento Psicológico” é preditora dos níveis de “Fadiga Samn-Perelli1”, ou seja, que os tripulantes que percepcionam piores experiências de recuperação relacionadas com o “Distanciamento Psicológico” são os que apresentam um maior nível de fadiga percecionada no momento da apresentação para o
PSV (MIA) ($p=.048; R^2=.037$). No entanto o “Distanciamento Psicológico” apenas prediz 3,7% da variância do nível de “Fadiga Samn-Perelli1”.

Discussão

A presente investigação tem como objetivo desenvolver um modelo preditivo englobando diferentes inputs, relacionados com as características individuais dos tripulantes, com a caracterização das tarefas e do seu contexto, experiências de recuperação e organização das escalas de voo, tendo em conta o seu efeito nas medidas de fadiga.

A análise da literatura e a diferenciação dos voos de NB e WB em termos legislativos, influenciando a distribuição e quantificação dos períodos de descanso dos tripulantes, urgem na discussão dos resultados obtidos relativamente aos objetivos propostos. Procedeu-se assim à análise de cada uma das hipóteses formuladas e do objetivo exploratório adicional.

Foram definidas como medidas de fadiga a escala Fadiga Samn-Perelli, a Sonolência Karolinska (KSS) e o CIS Fadiga. No respeitante à última medida, após análise fatorial foram extraídas quatro dimensões que correspondem às encontradas na literatura (Bültmann et al., 2000), embora a dimensão “Atividade” tenha sido excluída por apresentar um valor de coeficiente fidelidade de $\alpha=.63$ ($\alpha=.7$; Hill & Hill, 2002). Posteriormente foram eliminados três itens por observar-se que dois não saturavam em nenhum dos fatores e um saturava em dois que um fator. Pode-se assim concluir que as três dimensões apresentam uma consistência interna adequada, uma vez que os alfas de cronbach oscilam entre .76 e .89.

A especificidade da função assim como a irregularidade dos horários de trabalho, levaram à inclusão de uma medida global de caracterização do sono, Qualidade de Sono Percepcionada de Pittsburg (PSQI) (Bertolazi, Fagondes, Hoff, Dartora, Mizioz, Barba & Barreto, 2011). Em termo médio pode-se classificar a qualidade de sono da amostra ($M=8.23$) como “má”. A percepção de uma “má qualidade de sono” apresenta uma correlação negativa fraca com a “Fadiga Subjetiva” no momento inicial, o que corrobora em parte a literatura onde a qualidade de sono percebida está associada a uma maior pressão homeostática da necessidade de dormir, aumentando por seu turno os níveis de fadiga percepcionados no início do período de trabalho (Powell et al., 2008; Bültmann et al., 2000). Por outro lado, não se observou a associação positiva estatisticamente significativa esperada entre a variável e as dimensões da escala Experiências de Recuperação. Sonnentag e Fritz (2007) argumentam que uma má qualidade geral do sono está implicitamente relacionada com uma maior dificuldade e até mesmo inexistência de recuperação.
O “Estado de Espírito” (Garcia-Marques, 2004) e o POMS (Viana, Almeida & Santos, 2001) caracterizam os tripulantes no momento final como “emocionalmente exaustos” e como apresentando menor controlo emocional expresso por “irritabilidade”. Para Rupp et al. (2009) a deterioração do estado de humor, está associada a níveis de ansiedade e fadiga elevados, tendo como um dos preditores a sonolência. Os resultados corroboram a existência de uma associação moderada positiva entre o estado de humor e a ansiedade, e destes com as medidas de fadiga. Um maior nível de ansiedade e uma maior deterioração do humor estão associados a níveis mais elevados de fadiga. Sonnentag e Natter (2004) identificam estes fatores indicadores de recuperação insuficiente.

Na escala das Experiências de Recuperação, foram extraídas três dimensões, diferindo das quatro dimensões apresentadas na literatura (i.e., Relaxamento, Mestria, Controlo, Distanciamento Psicológico). Nas dimensões Relaxamento e Controlo os itens saturaram num só fator, sendo este nomenclado de Controlo/Relaxamento, facto que pode estar relacionado com as características da função de tripulante, em que tanto as atividades de relaxamento como o controlo dessas experiências encontram-se restringidas pelos horários irregulares de trabalho e pelas características do local de alojamento onde muitas vezes ocorre o período de descanso. Esta situação pode dever-se igualmente à validade de constructo da escala para amostra mensurada. No estudo de validação (Sonnentag e Fritz, 2007) apenas 18,6% dos sujeitos amostrados caraterizam o seu trabalho como tendo horários irregulares ou turnos.

As dimensões Mestria e Distanciamento Psicológico encontram-se associadas negativamente e de forma moderada com as medidas CIS Fadiga no momento final do PSV corroborando os efeitos referenciados por Sonnentag, et al., (2012). A dimensão “Distanciamento Psicológico” no momento inicial apresenta uma associação significativa com as medidas de Fadiga Samn-Perelli e Sonolência KSS e no momento final com as dimensões de CIS Fadiga (Concentração e Motivação) sugerindo a mensuração de um diferente constructo de fadiga das medidas operacionalizadas. Dittner, Wessely e Brown (2004) referem aquando o levantamento literário de medidas de fadiga, que uma das limitações para a comparação de resultados de diferentes estudos é a variabilidade de constructo de fadiga influenciada pela literatura que serve de base à escala utilizada e a sua interpretação por diferentes investigadores.
A Mestria, relacionada com a oportunidade de distração e aprendizagem de domínios extra-trabalho, está associada a uma menor fadiga reportada (CIS Fadiga) no momento final do PSV corroborando as associações encontradas na literatura (Sonnentag, 2011) entre as atividades de recuperação, embora exigam um esforço adicional, e a mitigação da fadiga associada à carga de trabalho.

No estudo de hipóteses constata-se a existência de uma associação moderada a forte entre as medidas de fadiga no momento inicial e no momento final. Verifica-se a mesma associação quando correlacionada a medida de fadiga mensurada no momento inicial com a mesma no momento final. A associação linear esperada, em que um nível mais elevado de fadiga no momento inicial corresponderia a um maior nível de fadiga reportada no momento final do PSV foi verificada, o que é reforçado amplamente na literatura (Demerouti, Moster & Bakker 2010; ICAO, 2011; Spencer & Robertson, 2007).

É fortemente denotada em estudos anteriores a distinção entre médio (NB) e longo-curso (WB) (ICAO, 2011; Spencer & Robertson, 2007), sendo a segunda tipologia de voo caracterizada por uma maior carga de trabalho, maior des sincronização do ritmo circadiano do tripulante (Taneja, 2007) e como tendo horários mais irregulares, necessitando uma maior duração dos períodos de descanso (quando comparado com o NB) por existirem maiores necessidades de recuperação (ICAO, 2011).

O presente estudo contraria os pressupostos e resultados anteriores, i.e., embora no momento inicial seja nos voos de NB que se encontram os níveis mais elevados de Sonolência KSS e de Fadiga Samn-Perelli, estes resultados devem-se ao fato de no NB a duração dos momentos em que existe oportunidade de recuperação seja mais reduzida (ICAO, IFALPA & IATA, 2011). Adicionalmente, não se verifica uma diferenciação na caracterização das experiências de recuperação entre os dois grupos, o que leva a concluir que uma maior duração do tempo de descanso está associada a um menor nível de fadiga no início do PSV. No momento final do PSV essas diferenças diluem-se, ou seja, os tripulantes encontram-se igualmente cansados.

Contrapondo a literatura (Simonson, 1984; Galipault, 1980) o tempo-na-tarefa ("time on task") traduzido no presente estudo pela Duração do PSV parece não ter um efeito no aumento dos níveis de fadiga no momento inicial e final de mensuração. De forma exploratória verificou-se a existência de em média, uma maior duração de PSV nos voos WB, o que leva à inferência, que embora amplamente referenciado na literatura, a duração do PSV
não apresenta uma associação moderada a forte com as medidas de fadiga (nos dois momentos). Estes dois fatores são considerados na generalidade dos modelos biomatemáticos como sendo mediadores dos níveis de sonolência e fadiga (Mallis et al., 2004).

Como objetivo exploratório adicional, é proposto o estudo do horário do voo e da correspondência com os períodos indicados pela literatura como os mais favoráveis, por distintos fatores (e.g., disrupção do ritmo circadiano, quantidade e qualidade do sono, avanço ou atraso do ciclo dia-noite, entre outros), a níveis mais elevados de fadiga subjetiva percepcionada (Avers et al., 2009). É aquando a apresentação ou despertar durante o período circadiano (2h-6h), que os níveis de fadiga percepcionada no momento inicial de apresentação para o PSV são mais elevados. O mesmo foi observado em indivíduos com horário de trabalho por turnos desenvolvido por Kecklund, Åkerstedt e Lowden (1997). Comparativamente verificou-se que estes níveis eram mais elevados na categoria Circadiano quando comparada com a categoria Noturno (22h às 02h) ou Ambos (22h às 06h). Ingre, Kecklund, Åkerstedt, Soderstrom e Kecklund (2008) referem que o despertar na categoria Circadiano representa uma maior restrição na duração do sono e que os trabalhadores que iniciavam o seu trabalho na segunda parte da noite apresentam um maior nível de sonolência e de fadiga subjetiva reportado. Samn e Perelli (1982) observaram os mesmos resultados em despertares cedo.

No momento final de mensuração, não se verifica um efeito estatístico significativo nas categorias anteriormente referidas e nas medidas de fadiga. Embora seja na categoria Noturno que se encontram em média os níveis mais elevados de fadiga reportados, estes podem ser justificados pela extensão do período de vigília. Arnedt et al. (2001) demonstraram que um período superior a 17 horas acordado pode resultar numa redução da performance e num aumento dos níveis de fadiga. Em consonância foram observados resultados similares quando diferenciadas as categorias da variável “1h antes do PSV” pelas médias de duração de PSV, i.e., a categoria Noturno apresenta em média 11h21 de PSV, mais 3h42 que a categoria Circadiano. Este período engloba por definição o intervalo (15h-17h) indicado por Gander et al. (1994) como um período crítico dos efeitos da fadiga estando associado igualmente a um nível de sonolência mais elevado.

Ao realizar-se uma MRLM de modo a verificar a influência dos diferentes inputs (variáveis independentes) na medida de Fadiga Samn-Perelli, objetiva-se o estudo de um modelo preditor da fadiga nos tripulantes de cabine. Os resultados demonstram que das
variáveis independentes introduzidas no modelo, unicamente os níveis de Fadiga Sanm-Perelli reportados no momento inicial de apresentação para o PSV são preditores do níveis da mesma no momento final do PSV. Complementarmente a Duração do PSV é preditor dos níveis de Fadiga Sanm-Perelli no momento final do PSV, estando o Distanciamento Psicológico identificado como preditor dos níveis de Fadiga Sanm-Perelli reportados no momento inicial. A ênfase se destaca novamente no tempo para a recuperação e na capacidade de distanciamento de situações induzidas de ansiedade, preocupação e problemáticas relacionadas com o desempenho da função (Sonntag & Natter, 2004; Sonntag & Fritz, 2007; ICAO, IFALPA & IATA, 2011).

Em suma, a irregularidade dos horários de trabalho, a influência do planeamento de voos na regulação homeostática do sono, os períodos de descanso cuja duração permita ao tripulante experimentar recuperação positiva e estratégias de mitigação de fadiga, em conjunto com as características individuais do tripulante e o desenvolvimento de um Sistema Gestão de Fadiga adaptado à cultura organizacional, são apontadas como medidas efetivas de mitigação da Fadiga, aumento da performance e redução do risco de acidente/incidente nas operações de voo.

Contribuição dos resultados para a literatura

Este trabalho pretende, enfatizar a importância das características individuais para o estudo da fadiga nos Tripulantes de Cabine. Aprofundar os estudos no desenvolvimento de medidas que permitam a mensuração contínua da Fadiga, estudar estratégias para a sua mitigação e valorizar a aprendizagem dos tripulantes por forma a permitir o ajustamento e adequação das suas próprias estratégias de mitigação. Por outro lado, as conclusões deste estudo permitem fornecer dados para a otimização do planeamento da escala de voo e sua operacionalização.

Implicações Teóricas

A literatura sobre as temáticas em estudo é restrita e generalista. Não existem muitos estudos aplicados à aviação e desses a maior parte que se debruça nos efeitos da fadiga na performance, segurança e na prevenção de acidentes/incidentes, foi realizada especificamente
com pilotos. Embora o contexto seja o mesmo, as exigências e as cargas de trabalho são diferentes e diferenciadas nas fases de voo. A preocupação cada vez mais ligada à segurança, não descurando a imagem comercial da empresa, tem vindo a fomentar estudos recentes na população de Tripulantes de Cabine.

Da mesma forma, o constructo de fadiga está intrinsecamente ligado à interpretação do investigador/pesquisador e a existência de poucos estudos sobre a temática leva uma possibilidade mais significativa de enviesamento das conclusões e recomendações das pesquisas.

Implicações Metodológicas

Foram encontradas algumas limitações no presente estudo. Embora a aplicação do instrumento tenha sido no local de trabalho e em momentos específicos e precisos temporalmente, o que apresenta vantagens na homogeneização das condições de recolha de dados, surgiram desvantagens no respeitante à atenção e concentração na resposta; os tripulantes sofreram várias interrupções durante o preenchimento dos questionários e além disso estavam sujeitos a pressões inerentes à carga de trabalho e urgência temporal na realização das tarefas, já que o momento inicial de recolha correspondeu ao momento de maior atividade do voo (Briefing).

Outra das limitações, foi a dimensão da amostra, o que deve em parte à grande variabilidade dos voos e da sua exigência explanada por diversos fatores. A existência de uma elevada multiplicidade de horários, de condições para a recuperação e/ou descanso e cada voo por si só ser uma experiência única (até pelo simples fato de as tripulações serem sempre compostas por elementos diferentes), aumenta a necessidade de amostras maiores por forma a normalizar a distribuição dos resultados das variáveis em estudo.

Implicações Aplicadas

As medidas de Fadiga Subjetiva sofrem limitação tanto pela pressão temporal da tarefa, como pelos níveis de fadiga do tripulante. Nos momentos de maior Fadiga Subjetiva reportada pelos tripulantes, as escalas que exigem maior concentração e até motivação no seu
preenchimento, perdem sensibilidade e validade (e.g., CIS Fadiga), tornando-se pertinente o teste de medidas específicas de avaliação de fadiga para tripulantes de cabine, que tenham como características rapidez de preenchimento e facilidade de interpretação.

Tendo em atenção o desenvolvimento de um sistema de gestão de fadiga, este trabalho apresenta contributos significativos relacionados com os indicadores de fadiga a utilizar, bem como alguns dos seus antecedentes e moderadores que importa monitorizar.

Recorreu-se a uma abordagem multinível que abrangeu dados transversais do dia de trabalho e da escala de voo antecedente e considerou indicadores psicológicos de fadiga que permitem caracterizar o trabalho, as experiências de recuperação e a qualidade do alojamento na recuperação.

O contributo na caracterização do trabalho do tripulante e a comparação de médio e longo-curo, através do estudo de indicadores de fadiga e do contributo das Neurociências Organizacionais, permitem pragmaticamente reestruturar as escalas de voo aumentando a performance, diminuindo o risco associado à fadiga e promovendo oportunidades necessárias à recuperação.

Sugestões para Estudos Futuros

Com base na literatura e em estudos muito recentes na área da Neuropsicologia, Neurologia e Biologia Genética, o presente estudo contemplou a recolha de dados biológicos (saliva) para análise e estudos futuros. Pretende-se assim, estudar os níveis de cortisol, oxitocina e testosterona das amostras de saliva recolhidas em simultâneo com as medidas subjetivas de fadiga, com o objetivo de associação e comparação de dados, corroboração e/ou validação das medidas subjetivas (Tabela 12).

Além das recolhas biológicas considera-se pertinente uma recolha longitudinal, recomendação que é suportada pela diferenciação na literatura entre fadiga aguda e crónica. Recomenda-se o recurso à actigrafia, a dados referentes tanto ao tempo-na-tarefa e carga de trabalho, como as atividades de recuperação, a adaptação a locais climaticamente diferentes (do local de descanso habitual) contemplando o atraso ou avanço do ciclo dia-noite (diferentes fusos horários), exposição luminosa, ritmos circadianos, alterações do ritmo cardíaco, quantificação e caracterização do sono do tripulante.
<table>
<thead>
<tr>
<th>Momento de Avaliação</th>
<th>Medida</th>
<th>Instrumento</th>
</tr>
</thead>
</table>
| Durante o PSV ou descanso no local de estadia | • Dados demográficos;
• Dados de caracterização da escala de voo;
• Experiências de Recuperação (NREC);
• Características do trabalho (Job Content Questionnaire);
• Qualidade do Sono Percepcionada Pittsburg (PSQI); | Questionário Neutro |
| Início do PSV (briefing) | • Fadiga (CIS);
• Fadiga Samn-Perelli;
• Sonolência Karolinska (KSS);
• Humor – “Estado de Espírito”;
• Perfil do Estado de Humor (POMS – versão reduzida);
• Caracterização do Estado de ansiedade (STAI-Y1); | Momento Inicial (MIA)
Recolha de Saliva |
| Início de novo Voo (escala NB) | • Fadiga Samn-Perelli;
• Sonolência Karolinska (KSS);
• Humor – “Estado de Espírito”;
• Perfil do Estado de Humor (POMS – versão reduzida);
• Caracterização do Estado de ansiedade (STAI-Y1); | Momento Intermédio
Questionário III |
| Fim do Voo ou PSV | • Nível de exigência do voo;
• Fadiga (CIS);
• Fadiga Samn-Perelli;
• Sonolência de Karolinska (KSS);
• Humor – “Estado de Espírito”;
• Perfil do Estado de Humor (POMS – versão reduzida);
• Caracterização do Estado de ansiedade (STAI-Y1);
• Caracterização do Alojamento. | Momento Final (MFA)
Questionário II |
Referências

Autoridade de Aviação Civil do Reino Unido (2011). Support for CAP 371 from research findings, UK CAA.

74

ANEXOS
ANEXO A – Revisão da Literatura

A estruturação da escala de trabalho (Rostering) do Tripulante e a associação com a Fadiga percepcionada

O trabalho por turnos requer mudanças repentinhas no sistema de sono/alerta relativamente ao ciclo de 24 h dia/noite. O relógio biológico circadiano do tripulante é muitas vezes “forçado” a contrariar a sua orientação de dormir à noite (definido pelo ciclo dia/noite), devido à realização de voos noturnos, e a retomar a sua orientação (implicando privação de sono) pela necessidade de participação social com as pessoas que estão ativas durante o dia (e.g., família e amigos).

Os tripulantes cuja escala conglomere uma sequência de voos noturnos, sofrem aclimatização em fusos horários diferentes, estejam sujeitos a ciclos dia/noite atrasados ou adiantados relativamente aos do seu local de descanso habitual (i.e., as suas casas), têm no período de 48h que compreende a sua folga:

a. adaptar o seu sono para dormir durante a noite;

b. usar o dia para as atividades de recuperação que fomentam o “distanciamento psicológico”;

c. realizar atividades lúdicas e atividades que lhe permitam a aprendizagem noutros domínios (“Mestria”) (Sonnentag & Fritz, 2007).

Como resultado, o relógio circadiano raramente se adapta a um horário de trabalho irregular. Ou seja, estar alerta durante o período de “noite biológica”, quando o relógio circadiano ativamente promove o sono e as capacidades de performance física e mental atingem os seus mínimos. Contrariamente, o tripulante pode ter a sua oportunidade para dormir durante o “dia biológico” quando o seu relógio circadiano promove ativamente o despertar/alerta e existe pressão homeostática imposta pela necessidade de dormir – disrupção do ciclo de vigília-sono e/ou ritmo circadiano.

Restrições do sono causam cumulativamente a degradação da performance física e psicológica para o trabalho (ou para a vida social e familiar do tripulante), degradação do humor (e.g., irritabilidade e desequilíbrio emocional) e níveis de ansiedade elevados causados
pela pressão homeostática da "necessidade de dormir/descansar" e pela pressão dos eventos sociais e familiares que ocorrem no contínuo temporal.

A recuperação dos efeitos cumulativos da restrição do sono consecutivamente durante dias requer pelo menos duas noites consecutivas sem restrições de sono. A "dívida" de sono acumulada por consecutivos períodos de serviço de voo (PSV) (Caldwell et al., 2009) leva à urgência de períodos de recuperação (duas noites consecutivas) e de "experiências de recuperação" que acelerem essa mesma recuperação (O’Keefe & Gander, 2012).

A pressão homeostática para dormir (Powell et al., 2008) é outro dos fatores referidos que afeta a sonolência e a performance no trabalho. Longos períodos de alerta, mais de 16 horas, resultam em níveis elevados de pressão homeostática associada a vigília e performance reduzidas (Bültmann et al., 2000) afetando seriamente a segurança (ICAO, 2011).

Como resultado, de uma perspetiva fisiológica, o padrão ideal é trabalhar de dia sem restrições de sono à noite, o que implicaria que a operação aeronáutica teria de ser reduzida em mais de 80%, quando se observam os horários dos voos planeados na escala do tripulante no espaço de um mês.

Landrigan, Rothschild, Cronin, Kaushal, Burdick, Katz, et al. (2004) demonstraram, tendo em conta um turno de 16h de dia e 16h de noite, que uma redução da duração do tempo no trabalho estava associada a uma redução de erro humano e de ameaças sérias à segurança.

Foi observada uma maior dificuldade em adormecer nos períodos de descanso de turnos de trabalho durante a noite, quando comparados com o sono após turnos durante o dia, levando a uma redução das horas de sono quando se efetuam turnos noturnos (Cavallo, Jaskiewicz & Ris, 2002). Como complemento Taoda, Nakamura, Kitahasa e Nishiyama (2008) referem que um aumento da sonolência está associado ao aumento das horas no trabalho e à diminuição da duração do sono.
Figura 4: Relação entre planeamento/escala de voo, segurança e saúde (O’Keefe & Gander, 2012)

Tucker, Brown, Dahlgren, Davies, Ebden, Folkland et al. (2010) investigaram diversos aspectos dos padrões horário-trabalho e concluíram que a fadiga aumenta com o aumento de períodos de trabalho noturno. Verificaram ainda que os indivíduos que só tiveram um dia de descanso após um bloco de períodos noturnos de trabalho (quando comparados com os que tiveram dois dias ou mais dias de descanso) reportaram significativamente mais fadiga no primeiro dia de trabalho após o descanso. Intervalos curtos (<10 horas) entre períodos de trabalho estavam associados a uma diminuição da duração do sono após longos períodos de trabalho e ao aumento da fadiga nos períodos de trabalho diurnos. O aumento das horas de trabalho estava associado a um aumento da fadiga nos períodos de vigília noturnos.
Lue, Chen, Wang, Cheng e Chen (2010) demonstraram, numa amostra de 617 médicos, que, a privação de sono, a necessidade de se manter alerta on-call e uma carga de trabalho elevada, são apontadas como principais factores causadores de stress.

Gander, Purnell, Garden e Woodward (2007) estudaram o trabalho noturno (≥3 turnos numa semana versus ≤ 1 em duas semanas) e as mudanças no horário (nas duas semanas versus nenhuma), considerados pelos autores como preditores independentes dos distúrbios reportados no balanço entre a vida “privada” e o trabalho. Os padrões de trabalho incluindo mudanças do horário e turnos noturnos provocaram dificuldades relacionadas com: o comprometimento com atividades regulares fora do trabalho (10,5%); estar demasiado cansado para manter atividades fora do trabalho (8,9%); interferência do trabalho na vida privada, nomeadamente nos fins-de-semana (8,7%); tempo insuficiente para estar com a família (8,0%).

O sono é necessário para existir aprendizagem e consolidação da informação na memória (Walker & Stickgold, 2004).

Despertares cedo “early birds” – Prevalência e relação com Fadiga percepcionada pelos Tripulantes

Ingre et al. (2008) demonstram nos seus estudos que despertares cedo durante turnos-manhã têm níveis de sonolência semelhantes aos reportados por indivíduos que trabalharam em turnos que englobavam a segunda metade da noite. Acresce que a duração do sono reportada quando existem despertares muito cedo (turno-manhã) é equivalente à reportada quando realizado um turno-noturno (05-06h) e diminui com o quanto mais cedo o momento em que se começa a trabalhar de manhã (despertares mais cedo). A duração do sono parece ser
proporcional à hora de início do trabalho matutino e quanto mais cedo esse início, menor a duração do sono (Ingre et al. 2008).

Kecklund, Åkerstedt e Lowden (1997) concluíram que começos matutinos na escala de trabalho, que implicuem despertares antes das 6h, apresentam níveis mais elevados de fadiga subjetiva reportada, diminuição da performance e sonolência, sendo o período mais crítico quando o horário de começar implica um despertar entre as 03h e as 04h da manhã.

Åkerstedt, Kecklund e Selén (2010) referem que os participantes que despertavam entre as 03h e as 04h50 eram os que apresentavam uma maior pressão homeostática na necessidade para dormir, uma atitude mais negativa face ao trabalho, dificuldade em dormir e distúrbios do sono, menor performance no trabalho, e maior prevalência de acidentes/incidentes relacionados com erro-humano; os que despertavam entre as 04h50 e as 05h50 eram os que reportavam o maior nível de fadiga percepcionada no final do dia de trabalho, dificuldade em acordar e uma maior dificuldade em adormecer no período de descanso posterior ao trabalho.

Ingre et al. (2008) demonstrou que a cada “uma hora menos” de despertar no intervalo das 06h às 03h, representava uma diminuição na duração do sono em 50 minutos. Por outro lado Rosa et al. (1996) demonstraram que a cada “uma hora mais”, fosse o despertar no intervalo das 03h às 06h, mais uma hora na duração do sono teria o indivíduo. Estes resultados baseiam-se tanto em restrições sociais, como no relógio circadiano biológico do indivíduo responsável por tornar mais difícil antecipar a hora de dormir do que o seu avanço (Åkerstedt et al., 2010).

Kercklund, Åkerstedt e Lowden (1997) constataram que a sonolência começa a aumentar quando a duração do sono é menor que sete horas por noite e que parte deste efeito pode ser relacionado com o fato de o indivíduo estar acordado no período circadiano (02/03h às 06h) o que está também associado à diminuição da vigília e dificuldades no despertar.

Outro dos fatores ligados aos “early birds” é a interrupção do estádio de sono de ondas lentas o que indica uma diminuição da qualidade fisiológica do mesmo e do seu efeito reparador, sentir-se cansado, causando níveis de sonolência atípicos durante o dia (Kecklund & Åkerstedt, 2004).
Sallinen, Härä, Mutanen, Pihl, Ranta, Virkkala e Müller (2002) estabelecem uma associação entre a idade do trabalhador e a resposta a despertas cedo, e verificam que todos os fatores de risco diminuem com o aumento da idade.

Åkerstedt e Wright (2009) além de todos os fatores de risco associados ao trabalho por turno e horários irregulares, referem a importância da alteração do sono para o período diurno na disrupção da regulação circadiana e homeostática do mesmo, e sua contribuição para uma maior prevalência de doenças cardiovasculares e certas formas de cancro. A razão apontada pelos autores é o conflito entre a fisiologia da orientação do ritmo circadiano, pelo ciclo dia/noite, e a exigência de trabalhar e dormir no período biológico errado (i.e. dormir de dia e trabalhar de noite). Apontam, igualmente, quer a longa duração dos períodos de trabalho, mais de 12 horas, quer a intolerância de fase (e.g., indivíduos matutinos, vespertinos e notívagos) como causadores de desordens provocadas pelo trabalho em horário irregular (i.e. sonolência e diminuição da performance durante a noite biológica e insónia durante o dia biológico). Defendem que, no presente, não existe forma de eliminar a maioria dos efeitos negativos do trabalho por turnos na fisiologia e cognição humanas e que as consequências vão muito mais além do risco associado à fadiga, levando a mutações hormonais e até mesmo no genótipo.

Uma maior pressão homeostática do sono resulta numa debilitação da cognição, num aumento da sonolência e num aumento da propensão para dormir, durante o período de vigília. Os processos homeostáticos e circadianos interagem para influenciar a qualidade cognitiva e de sono percebidas. A disrupção entre o ritmo circadiano interno e os ciclos vigília-sono conjugados com o ciclo trabalho-descanso levam a disrupção da vigília e do sono (Åkerstedt & Wright, 2009). Mudanças bruscas e repentinas na escala de trabalho estão associadas a uma menor duração do sono quando comparadas com rotasções lentas e estruturadas (e.g. três semanas consecutivas no mesmo turno de trabalho) (Barnes, 2012).

A aplicação dos princípios do ritmo circadiano ao trabalho por turnos tem demonstrado eficiência no ajuste da duração do sono e na capacidade de estar alerta em operações de trabalho noturno (Bjorvatn, Stangenes, Oyane, Forberg, Lowden, Holsten et al, 2006).

Dement e Carskadon (1982) apontam que a sonolência não é o mesmo que fadiga como constructo científico, sendo definida como a tendência para “adormecer” durante
períodos entendidos como vigília. A Fadiga deve incluir não só sonolência, mas também estados de fadiga física e mental.

Verhaeghen, Maasen e Meers (1981); Paley e Tepas (1994) indicam que a fadiga aumenta no início do período de trabalho e diminui no final do turno. Adicionalmente a maioria dos trabalhadores reporta uma maior frequência de micro-sonhos durante os turnos da noite e nos despertares muito cedo em contraposição com turnos diurnos (Prokop & Prokop, 1955, Luna, French & Mitcha, 1997).

Medidas de Fadiga Subjetiva

Para Dittner et al. (2004) o investigador deverá assegurar que a medida (instrumento) escolhido avalia o aspecto pretendido de fadiga para um determinado propósito, de forma a satisfazer todos os requisitos do estudo e simultaneamente ser consistente e válida.

Seguidamente são apresentados alguns exemplos de medidas referidas pelo seu espectro de utilização em tripulantes de cabine e em trabalhadores com horários de trabalho irregulares (ICAO, IFALPA & IATA, 2011).

Para obter uma mensuração da sonolência subjetiva no turno de trabalho é necessária a obtenção de múltiplas medidas durante cada turno e durante os dias de folga, incluindo as atividades de lazer (Härma, Sallinen, Ranta, Mutanen & Muller, 2002). É igualmente sugerido que a sonolência associada ao turno de trabalho está relacionada com a escala de trabalho, mas não pode ser considerada uma desordem primária do sono, se estiver presente uma sonolência excessiva.
Na escala de sonolência de Karolinska (KSS) (Åkerstedt & Gilbert, 1990) pergunta-se aos sujeitos o “quão sonolentos se sentem no momento” numa escala tipo Likert de 1-9. Foi realizado um estudo a 60 trabalhadores, com uma escala de trabalho por turnos de rotação rápida e períodos de descanso de 8h entre turnos (Axelsson, Åkerstedt, Keeklund & Lowden, 2004), em que a escala de trabalho se iniciava com o turno da noite (21h-06h) seguido de 8h de descanso, um turno da tarde (14h-21h) seguido de 8h de descanso e um turno da manhã (6h-14h). A esta tríade, seguiu-se um período de 56 horas de folga (duas noites consecutivas de sono). Este padrão foi repetido sete vezes e o ciclo terminou com oito dias de descanso.

Verificaram que a sonolência atinge o seu máximo, tendo em conta os primeiros dois dias do período de sete consecutivos. No primeiro turno noturno (KSS=6.5), baixou para níveis intermédios (KSS = 4-4.5) no turno da tarde (após M=5.4 horas de sono) e alcançou outra vez níveis elevados no turno da manhã (após M=4.5 horas de sono). A sonolência voltou a níveis KSS<4, considerados normais, no primeiro dia de recuperação. O turno da noite e os turnos da manhã apresentam similarmente níveis de KSS elevados de sonolência, atingindo valores próximos do máximo (KSS=9) quando o indivíduo desperta antes das 06h da manhã.

Igualmente num estudo com tripulantes de cabine (Samel et al., 1997), concluiu-se que cinco dias com uma média de 04h de sono por noite, levam a exaustão extrema (6<KSS<7). Estes níveis de exaustão, mensurada numa escala KSS, mantém-se durante os dois dias de folga seguintes (6<KSS<7).

Eastman, Stewart, Mahoney, Liu e Fogg (1994) demonstraram que a adaptação aos turnos noturnos não acontece, devido em grande parte pela exposição à luz do dia quando os trabalhadores se deslocam para o local de descanso, o que contrapõe o ritmo circadiano biológico do indivíduo (luminosidade fomenta a vigília). Demonstaram ainda que mudanças rápidas no ciclo dia-noite, muitas vezes causadas por diferentes fusos horários, implicam um período mínimo de cinco dias de recuperação, para que os níveis de sonolência diurna regressem aos níveis normais (1<KSS<3), tanto nas suas casas, como no local de destino (aclimatização). Os resultados sugerem que um ajuste do ritmo circadiano do indivíduo ao trabalho noturno, necessita de um mínimo de seis dias de recuperação para que se reverter esse ajuste para um ritmo circadiano ajustado ao ciclo dia-noite.

Na escala de fadiga de Samn-Perelli (Samn & Perelli, 1982) é pedido aos indivíduos para indicarem numa escala tipo Likert de 1-7 o nível de fadiga percepccionado no momento. O objectivo inicial dos autores era desenvolver um algoritmo preditor dos níveis de fadiga nas
tripulações de voo em situações pré-estabelecidas. A escala tem sido a mais utilizada nos estudos da fadiga envolvendo tripulantes (Balkin et al., 2004).

Para Sarno e Perelli (1982) a predição da fadiga tinha importância na construção dos planeamentos/escalas de voo, no estudo de padrões adequados de descanso, na prevenção de acidentes/incidentes associados à fadiga (erro-humano) e no cálculo adequado da carga de trabalho do tempo-na-tarefa, tendo como objectivo final utilizar a escala de mensuração na construção de um planeamento de voos onde a performance fosse elevada e os níveis de fadiga percepcionados mínimos.

O Checklist Individual Strength (CIS) tem sido uma das escalas multidimensionais mais referenciadas na literatura (Batt & O’Hare, 2005), entendida como uma medida multidimensional da severidade e das consequências comportamentais da Fadiga (Vercoulen, Swanink, Fennis, Galama, Meer & Bleijenberg, 1994). Foi validada para a população organizacional (Beurskens et al., 2000; Bültmann, et al., 2000; D’Oliveira, 2012) e dividida em quatro sub-escalas ou dimensões: Experiência Subjetiva de Fadiga (Fadiga Subjetiva), Concentração, Motivação e Atividade Física.

Batt e O’Harc (2005) estabelecem que o processo de tomada-de-decisão nas tripulações é central no respeitante à segurança e ao sucesso do voo. Adicionalmente Harrison e Horne (1994) sugerem que a capacidade de tomada-de-decisão diminui com o aumento dos níveis de fadiga. Por outro lado Caldwell (2005) define que o aumento das horas de voo e os horários irregulares são a principal causa de prevalência de fadiga nos tripulantes.

Hawkins (1987) diz-nos que as medidas individuais de fadiga não consideram fatores como a coordenação dos tripulantes, a comunicação e a liderança como tendo influência na performance destes durante momentos críticos de segurança do voo.

Dittner, Wessely e Brown (2004) no seu estudo de caracterização de escalas de medição de fadiga subjetiva, sublinham o fato que todas têm o propósito de mensuração da fadiga reportada pelo próprio e que a informação recolhida depende das questões colocadas. Estas têm como base a conceptualização de fadiga do investigador que desenvolveu os estudos conceituais e as respostas têm como base a interpretação da fadiga do respondente, o que significa que diferentes escalas podem medir diferentes aspectos fundamentais da experiência de fadiga ou potencialmente diferentes construtos da mesma.
Recuperação e Atividades de Recuperação

Fritz, Sonnentag, Spector e McInroe (2010) apontam como experiências de recuperação, as experiências que ocorrem nos períodos de ausência de demandas relacionadas ao trabalho, permitindo ao indivíduo restabelecer os recursos despendidos. Sonnentag (2003) descreve estas experiências como benéficas para o indivíduo mas insuficientes, referindo a necessidade de oportunidades adicionais para completar o processo de recuperação. A ausência de exigências relacionadas com o trabalho permite o investimento em novos recursos (Fritz & Sonnentag, 2005). No entanto os efeitos benéficos na recuperação do afastamento do contexto de trabalho por longos períodos de tempo (e.g., férias) deterioram-se rapidamente (Sonnentag, 2003). Meijman e Mulder (1998) descrevem os fins-de-semana como oportunidade de recuperação, onde as exigências do trabalho são reduzidas ou ausentes, permitindo uma recuperação da tensão induzida pela percepção das exigências do trabalho, possibilitando a recuperação e regeneração dos recursos consumidos durante a semana de trabalho anterior. Estas oportunidades de recuperação são apontadas na literatura como tendo um papel crucial na atenuação dos efeitos do stress causado pelo trabalho, influenciadoras da performance, regulação emocional do trabalhador e também na saúde e bem-estar (Fritz & Sonnentag, 2005; Sonnentag & Fritz, 2007).

As evidências empíricas do estudo das experiências de recuperação referem que são os processos psicológicos individuais que conduzem à recuperação, sugerindo que diferentes oportunidades indutoras de recuperação têm de base processos de regulação similares (e.g., relaxamento) (Sonnentag & Fritz, 2007), i.e., podem-se diferenciar os trabalhadores relativamente às atividades de recuperação experienciadas (e.g., caminhar, ler um livro, musculação) sendo as experiências psicológicas de recuperação descritas similares.
Fritz et al. (2010) avocam que o processo de recuperação está associado a determinadas atividades, existindo um processo na escolha dessas atividades intrínseco às características de preferência individuais, e aludindo como consequência os efeitos de recuperação (física e psicológica) uniformes. Sonntag e Fritz (2007) expressam que o potencial de recuperação fora do trabalho não depende apenas das atividades ou oportunidades de recuperação, mas também do próprio e das avaliações pessoais que faz das mesmas, encarando como positivo ou negativo o esforço despendido.

A análise da literatura parece ser contraditória na classificação como positivas ou negativas determinadas experiências extralaborais. As atividades sociais para Sonntag (2001; Rook & Zijlsta, 2006) têm uma valência positiva no processo de recuperação, que por seu turno são referenciadas por Sonntag e Natter (2004) como negativas para uma recuperação eficaz. Por outro lado as atividades físicas (e.g., desporto) encontram consonância na literatura. Embora exigam esforço por parte do indivíduo, estão associadas positivamente com indicadores de recuperação (Sonntag & Natter, 2004; Sonntag & Fritz, 2007; Demerouti, Bakker, Geurts & Taris, 2009). O esforço despendido é percepcionado como tendo uma relação de causalidade com o efeito benéfico na saúde e bem-estar. Rook e Zijlsta (2006) mencionam identicamente as atividades de baixo esforço (e.g., ver televisão, ler um livro, observação de aves), como contribuindo positivamente na recuperação uma vez que exigem poucos recursos mentais e promovem o relaxamento. Contrariamente, os autores classificam as atividades domésticas e prestação de cuidados infantis como induzores de fadiga, devendo-se à percepção negativa do esforço despendido aquando a sua realização, não permitindo ao indivíduo restabelecer os seus recursos e reduzindo o tempo disponível para uma recuperação eficaz.

Para Fritz e Sonntag (2005) a quantidade e a qualidade das oportunidades de recuperação são fatores que influenciam o processo de recuperação. Sonntag e Fritz (2007) realçam a importância aos atributos subjacentes à experiência de recuperação, como o relaxamento ou distanciamento psicológico do trabalho, na recuperação do stress induzido por fatores que caraterizam o contexto de trabalho.

Sonntag e Fritz (2007; Sonntag, Binnewies & Mojza, 2008) destacam quatro experiências de recuperação: distanciamento psicológico, relaxamento, mestria e controlo.

O distanciamento psicológico refere-se à sensação de estar longe do trabalho e de mentalmente o indivíduo estar ocupado com pensamentos não relacionados ao trabalho.
(Etzion, Eden & Lapidot, 1998), permitindo a redução das exigências feitas ao sistema funcional, tendo como consequência a recuperação.

As experiências de mestria são atividades, que fora do período de trabalho, representam desafios e oportunidades de aquisição de novos conhecimentos ou competências (Sonnentag & Fritz, 2007). Apesar destas experiências não estarem isentas de esforço, exigindo maior proficiência e recursos do indivíduo, a sua experimentação física e psicológica tem um efeito positivo no processo de recuperação (Mozja et al., 2010).

O controlo centra-se na medida em que o indivíduo perceciona liberdade na escolha das atividades de recuperação e qual o seu envolvimento satisfazendo a necessidade individual de autonomia. As experiências de controlo estão associadas ao domínio percepcionado pelo indivíduo na gestão das oportunidades de recuperação (Sonnentag & Fritz, 2007). Sonnentag e Fritz (2007) comprovam que o bem-estar individual aumenta quando os indivíduos sentem que têm controlo sobre a sua vida e que uma percepção de pouco controlo, esta relacionada a autoavaliações negativas, diminuição da autoestima, e em casos mais extremos está associada a ansiedade e depressão.

Têm sido apresentados vários modelos teóricos que permitem compreender a importância das experiências de recuperação. As diferentes conceptualizações têm tido relevância no estudo das oportunidades e experiências de recuperação dos tripulantes de cabine.

O Modelo de Esforço-Recuperação pretende compreender a recuperação incompleta de stress e o modo como os colaboradores reagem às exigências da tarefa e do contexto de trabalho. Existe a necessidade de um ponto de equilíbrio entre as exigências do trabalho e as capacidades individuais, sendo que, uma redução dessas capacidades incrementa um esforço
extra para a manutenção da performance, tendo como consequência o amento da fadiga ocupacional (Sonnentag & Natter, 2004).

A Teoria da Conservação de Recursos (Hobfoll, 1998) tem como base o facto de que os indivíduos se esforçam para obter, reter, proteger e construir os seus recursos. O stress surge da ameaça a estes recursos, diferenciados pelas características individuais, materiais e energéticas (como a vitalidade). Recursos como a auto-estima e a vitalidade podem ser afetados em situações de trabalho pouco favoráveis e a sua recuperação é feita no período pós-laboral, através de atividades de lazer (Sonnentag, 2001; Sonnentag & Natter 2004).

Demerouti et al., (2009) descreve o Modelo de Carga Alóstática como um processo de ajuste do sistema fisiológico de um nível de ativação para outro, incluindo a passagem de atividade para descanso. O sistema fisiológico está em constante mudança de forma a adaptar-se às circunstâncias na tentativa de manutenção de níveis estáveis. Uma resposta adaptativa à carga de trabalho pode incluir um aumento da tensão arterial e dos batimentos cardíacos durante uma determinada atividade. Assim que a atividade acaba e o indivíduo já não está sujeito à carga de trabalho, tanto a tensão arterial como os batimentos cardíacos devem entrar num estado de descanso (Rodrigues & D’Oliveira, 2013).

McEwen e Stellar (1993) propõem um modelo operacional multi-factores onde:

a. uma sequência de eventos ocorre sob condições de stress;

b. a resposta comportamental de stress, devido à posição social (dominante ou passivo) no contexto onde o indivíduo está inserido, é determinada pela reação a um estímulo físico ou psicológico;

c. a carga genética, o desenvolvimento psicológico, o género, as apreapredizagens e os contextos sociais anteriores, determinam o efeito do estímulo no processamento de informação pelo sistema nervoso;

A identificação ou não, do estímulo como ameaça leva a que: se ameaçado nos seus recursos e o foco não for conhecido, o indivíduo torna-se hiper-vigilante; se a origem for conhecida apenas será necessário identificar uma estratégia de coping para a resolução.

Meijman & Mulder (1998) referem que durante o tempo que os indivíduos estão fora do trabalho, estão idealmente livres das exigências diárias, sendo que os sistemas psicofisiológicos ativados durante o trabalho regressam aos níveis iniciais. O distanciamento psicológico (Sonnentag & Fritz, 2007) promove a qualidade das experiências de recuperação
e a sua eficácia. Nos tripulantes as oportunidades de recuperação ocorrem essencialmente durante a estadia fora das suas casas, onde estão ao serviço da organização, o que não permite o distanciamento psicológico pois as suas atividades estão limitadas pelas características e normativos da sua função ("standby"). Por outro lado, o regresso a casa exige uma adaptação repentina às rotinas domésticas e está relacionado com um amento das obrigações sociais tendo um efeito negativo na recuperação (Sonnentag & Natter, 2004).
ANEXO B – Caracterização da Amostra

Tabela 1: Gênero

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Feminino</td>
<td>33</td>
<td>64,7</td>
<td>64,7</td>
</tr>
<tr>
<td></td>
<td>Masculino</td>
<td>18</td>
<td>35,3</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela 2: Idade (em anos)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Valid</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Missing</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>35,7</td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>7,0458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 3: Tipo de contrato

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Permanente</td>
<td>48</td>
<td>94,1</td>
<td>94,1</td>
</tr>
<tr>
<td></td>
<td>Temporário</td>
<td>3</td>
<td>5,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela 4: Tem ou não filhos

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Não</td>
<td>24</td>
<td>47,1</td>
<td>47,1</td>
</tr>
<tr>
<td></td>
<td>Sim</td>
<td>27</td>
<td>52,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>
Tabela 5: Fumador

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Não</td>
<td>34</td>
<td>66,7</td>
<td>66,7</td>
<td>66,7</td>
</tr>
<tr>
<td>Sin</td>
<td>17</td>
<td>33,3</td>
<td>33,3</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 6: Habilitações literárias

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid Ensino Secundário</td>
<td>15</td>
<td>29,4</td>
<td>29,4</td>
<td>29,4</td>
</tr>
<tr>
<td>Bacharelato ou Frequência Universitária</td>
<td>20</td>
<td>39,2</td>
<td>39,2</td>
<td>68,6</td>
</tr>
<tr>
<td>Licenciatura</td>
<td>14</td>
<td>27,5</td>
<td>27,5</td>
<td>96,1</td>
</tr>
<tr>
<td>Mestrado</td>
<td>2</td>
<td>3,9</td>
<td>3,9</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
</tr>
</tbody>
</table>

Tabela 7: Antiguidade na Função

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Valid</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td>11,3382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>7,94006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>42,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 8: Antiguidade na Organização

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Valid</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Missing</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td>11,2402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>8,22207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>42,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabela 9: Quadro de Voo

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>WB</td>
<td>18</td>
<td>35,3</td>
<td>35,3</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td>16</td>
<td>31,4</td>
<td>66,7</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>17</td>
<td>33,3</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela 10: Prática de alguma atividade Física

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Não</td>
<td>16</td>
<td>31,4</td>
<td>31,4</td>
</tr>
<tr>
<td></td>
<td>Sim</td>
<td>35</td>
<td>68,6</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela 11: Tipo de atividade que pratica

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Aeróbias</td>
<td>19</td>
<td>37,3</td>
<td>54,3</td>
</tr>
<tr>
<td></td>
<td>Anaeróbias</td>
<td>8</td>
<td>15,7</td>
<td>77,1</td>
</tr>
<tr>
<td></td>
<td>Ambas</td>
<td>8</td>
<td>15,7</td>
<td>100,0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35</td>
<td>68,6</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>System</td>
<td>16</td>
<td>31,4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>51</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabela 12: Frequência Atividade Física

<table>
<thead>
<tr>
<th>Semana</th>
<th>N</th>
<th>Valid</th>
<th>Missing</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>16</td>
<td>2,886</td>
<td>1,3671</td>
<td>1,0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>Percent</td>
<td>Valid Percent</td>
<td>Percent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid</td>
<td>NB</td>
<td>29</td>
<td>35,4</td>
<td>35,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>53</td>
<td>64,6</td>
<td>100,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>82</td>
<td>100,0</td>
<td>100,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO C – Questionário Neutro

CONSENTIMENTO INFORMADO

Objective do Estudo: Estudar de que forma as experiências de recuperação, nomeadamente influenciam o desempenho físico e psicológico no local de trabalho.

Equipe de Investigação: Ricardo Zambujal e Prof. Doutora Teresa D'Oliveira

Instituição: ISPA, Instituto Universitário

Contactos:
Endereço electrónico: rzambujal@gmail.com ou Teresa.Oliveira@ispa.pt

Caro(a) Colaborador(a)

Vimos, por este meio, convidá-lo(a) a participar neste projecto de investigação, a sua participação é voluntária, podendo retirar o seu consentimento em qualquer momento, sem qualquer prejuízo pessoal ou profissional.

Este documento inclui informações relevantes acerca deste projecto de investigação e, por isso, ser-lhe-á fornecida uma cópia. Poderá, em qualquer momento, perguntar aos investigadores acima indicados quaisquer questões relacionadas com este estudo.

Este estudo está inserido no âmbito da Tese de Mestrado em Psicologia Social e das Organizações e tem como objectivo estudar a possível relação entre os comportamentos no trabalho e as experiências de recuperação. Da igual forma, queremos perceber como as atividades nos tempos livres podem influenciar o bem-estar em contexto de trabalho. Dado que os comportamentos de trabalho são fortemente influenciados pelo momento do dia em que têm lugar, solicitamos igualmente informações sobre os seus horários de trabalho e rotinas diárias ligadas ao descanso e repouso.

Se concordar em participar, ser-lhe-á pedido para preencher um questionário que terá como objectivo avaliar a sua ligação ao trabalho, a forma como se sente após um dia de trabalho e perceber que tipo de actividades pratica nos tempos livres bem como a regularidade da mesma.

Esta investigação pretende beneficiar a sociedade em geral através da obtenção de novos conhecimentos. No entanto, poderá não beneficiar pessoalmente da participação neste estudo. Paralelamente, não acreditamos quaisquer riscos associados à participação neste estudo e não há custos envolvidos.
Os dados recolhidos serão confidenciais sendo que apenas a equipa de investigação terá acesso aos mesmos. A sua privacidade será protegida através do uso de uma sigla, sem qualquer identificação. Os participantes deste estudo não serão identificados em qualquer análise, relatório ou apresentação final.

Desejo ter acesso aos resultados gerais deste estudo, através de correio electrónico:

Sim [] Não []

Se respondeu Sim, por favor indique o seu endereço electrónico:
INSTRUÇÕES

O estudo que seguidamente lhe propomos visa estudar a possível relação entre os comportamentos no trabalho e as experiências de recuperação. De igual forma, queremos perceber como as atividades nos tempos livres podem influenciar o bem-estar em contexto de trabalho. Dado que os comportamentos de trabalho são fortemente influenciados pelo momento do dia em que têm lugar, solicitamos igualmente informações sobre os seus horários de trabalho e rotinas diárias ligadas ao descanso e repouso.

Seguidamente são apresentadas várias afirmações que reflectem sentimentos e opiniões em relação ao seu bem-estar, aos seus horários de trabalho, e como sentem após folgas e sobre as suas rotinas de descanso.

O que lhe pedimos é que responda com a maior sinceridade e espontaneidade possível (estamos interessados na sua primeira resposta). Não existem respostas corretas ou erradas, apenas a sua opinião pessoal. Os dados recolhidos são confidenciais pelo que não se identifique em nenhuma parte deste questionário.

Informações adicionais poderão ser recolhidas junto de Ricardo Zambujal (rzambujal@gmail.com) ou de Professora Doutora Teresa C. D'Oliveira (Teresa.Oliveira@ispa.pt). Teremos todo o gosto em fornecer os esclarecimentos adicionais que considerar necessários.

Gratos pela sua colaboração.

Ricardo Zambujal
Teresa C. D'Oliveira
1. Indique o seu sexo.
 - Masculino (1)
 - Feminino (2)

2. Indique a sua idade (em anos).

3. Tem filhos?
 - Sim (1)
 - Não (0)
 Se indicou sim, diga quantos filhos tem e as respetivas idades.

4. Indique o tipo de contrato de trabalho que tem.
 - Permanente
 - Temporário

5. É fumador?
 - Sim (1)
 - Não (0)
 Se indicou sim, indique quantos cigarros em média fuma por dia.

6. Indique o quadro a que pertence.
 - WB
 - NB
 - NW

7. Indique quais as suas habilitações literárias completas.

8. Há quanto tempo trabalha para esta empresa/organização? (em anos)

9. Há quanto tempo executa as suas funções? (em anos)

10. O seu planeamento da mão vigente é:
 - Normal
 - BMSA (Bolsa Mensal de Servico de Assistência)
 - Férias
11. Exerce alguma atividade física nos seus tempos livres?

Sim (1) [] Não (0) []

Caso tenha respondido sim indique.

11.a. Qual a atividade que pratica.

11.b. Quantas vezes por semana.

11.c. Em que altura do dia (manhã, tarde ou noite).

11.d. Em que local pratica a sua actividade (gimnasio ou num local exterior).

Instruções

De seguida encontrará algumas questões referentes ao seu planeamento/escala de serviço vigente. Assinale a(s) resposta(s) mais adequada referindo-se ao dia em que estamos, aos 4 dias anteriores e aos próximos 2 dias.

1. Assinale os dias em que gozou efetivamente folgas.

Hoje []
Ontem []
Anteontem []
Há 3 dias atrás []
Há 4 dias atrás []
Nenhum []

2. Assinale os dias em que despertou antes das 6h00 (hora em que acordou e não hora de desp.
3. Assinale os dias em que fez voos num período circadiano (compreendido entre as 2h00 e as 6h00).
 - Hoje
 - Ontem
 - Anteontem
 - Há 3 dias atrás
 - Há 4 dias atrás
 - Nenhum

4. Assinale os dias em que fez um serviço de voo noturno (compreendido entre as 23h00 e as 2h00).
 - Hoje
 - Ontem
 - Anteontem
 - Há 3 dias atrás
 - Há 4 dias atrás
 - Nenhum

5. Assinale os dias em que esteve de assistência, reserva ou on-call.
 - Hoje
 - Ontem
 - Anteontem
 - Há 3 dias atrás
 - Há 4 dias atrás
 - Nenhum

6. Em relação ao dia de hoje, caso tenha estado de serviço:
 - Nº horas PSV/Duty efetuadas
 - Nº de pernas/sectores voados

7. Nos próximos 2 dias vai estar de
 - Folga
 - Novo Voo
 - Assistência
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo</th>
<th>Concordo Totallymente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Eu sinto que posso decidir o que fazer.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>2.</td>
<td>Eu aprendo coisas novas.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>3.</td>
<td>Eu esqueço-me do trabalho.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>4.</td>
<td>Eu decido sobre os meus horários.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>5.</td>
<td>Eu não penso no trabalho de todo.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>6.</td>
<td>Eu consigo descontrair e relaxar.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>7.</td>
<td>Eu procuro desafios intelectuais.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>8.</td>
<td>Eu faço coisas que me desafiam.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>9.</td>
<td>Eu decido eu próprio como vou passar o meu tempo.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>10.</td>
<td>Eu consigo distanciar-me do meu trabalho.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>11.</td>
<td>Eu faço coisas relaxantes.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>12.</td>
<td>Eu aproveito o tempo para relaxar.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>13.</td>
<td>Eu trato das coisas da maneira como eu quero.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>14.</td>
<td>Eu uso o tempo para lazer.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>15.</td>
<td>Eu faço algo para alargar os meus horizontes.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
<tr>
<td>16.</td>
<td>Eu consigo fazer uma pausa das exigências do trabalho.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Concordo Totallymente</td>
</tr>
</tbody>
</table>
1. O meu trabalho exige que aprenda coisas novas.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

2. O meu trabalho envolve tarefas muito repetitivas.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

3. O meu trabalho exige um nível elevado de competências.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

4. O meu trabalho tem uma variedade de tarefas.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

5. O meu trabalho exige criatividade.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

6. O meu trabalho permite que desenvolva as minhas melhores características.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

7. O trabalhador tem bastante a dizer sobre o que acontece no seu trabalho.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

8. No meu trabalho, o trabalhador tem liberdade para decidir como faz o trabalho.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

9. Este trabalho permite que o trabalhador tome muitas decisões sozinho.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

10. O meu trabalho exige que se trabalhe muito depressa.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

11. O meu trabalho exige que se trabalhe muito.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

12. O meu trabalho não envolve uma quantidade de trabalho excessiva.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

13. O trabalhador tem tempo suficiente para fazer o trabalho.

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Discordo Totalmente</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo Totalmente</th>
</tr>
</thead>
</table>
As seguintes questões estão relacionadas com os seus hábitos de sono apenas no último mês. As suas respostas devem indicar a opção mais correta para a maior parte dos dias e das noites do último mês.

1. A que horas foi normalmente para a cama
 Durante os dias de trabalho Nos dias de folga
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |

2. Quanto tempo, em minutos, demorou a adormecer
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |

3. A que horas se levantou de manhã
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |

4. Quantas horas por dia dormiu mesmo
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |

5. Durante o último mês, quantas vezes teve dificuldade em dormir porque...
 a. Não conseguiu dormir em 30 minutos
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 b. Acordou a mezo da noite ou de manhã muito cedo
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 c. Teve de se levantar para ir à casa de banho
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 d. Não conseguiu respirar confortavelmente
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 e. Toalha ou ressonou alto
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 f. Teve muito frio
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 g. Teve muito calor
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 h. Teve pesadelos
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 i. Teve dores
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
 j. Outra(s) razão(s), por favor descreva
 | Nunca | 0 | Uma vez por semana | 1 | Uma a duas vezes por semana | 2 | Três ou mais vezes por semana | 3 |
6. Durante o último mês, quantas vezes tomou medicamentos (prescritos ou não pelo médico) para ajudar a dormir?
 - Nunca [0]
 - Uma vez por semana [1]
 - Uma a duas vezes por semana [2]
 - Três ou mais vezes por semana [3]

7. Durante o último mês, quantas vezes teve dificuldade em manter-se acordado enquanto conduzia, durante as reflexões ou em atividades sociais?
 - Nunca [0]
 - Uma vez por semana [1]
 - Uma a duas vezes por semana [2]
 - Três ou mais vezes por semana [3]

8. Durante o último mês, quantas vezes teve dificuldade em manter o entusiasmo na realização das suas tarefas?
 - Nunca [0]
 - Uma vez por semana [1]
 - Uma a duas vezes por semana [2]
 - Três ou mais vezes por semana [3]

Em geral, como avaliara qualidade do seu sono?
- Muito mau [0]
- Mediano [1]
- Boa [2]
- Muito boa [3]

OBRISADO PELA COLABORAÇÃO.
ANEXO D – Questionário I Momento Inicial

Instruções
Seguidamente vai encontrar várias afirmações relativas à forma **como se sente neste momento**, indique em que medida a afirmação descreve a sua opinião, utilizando a escala apresentada.

<table>
<thead>
<tr>
<th>N°</th>
<th>Afirmação</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo</th>
<th>Concordo totalmente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sinto-me cansado(a).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sinto-me muito activo(a).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pensei em desistir.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fisicamente sinto-me cansado(a).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fisicamente sinto-me exausto(a).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fisicamente sinto-me aliviado(a).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sinto-me com vontade de fazer coisas boas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Sinto-me em forma.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Faço bastante esforço.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Quando estou a fazer algo, consigo-me concentrar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Não consigo fazer muitas coisas durante o dia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Consigo-me concentrar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Sinto dificuldades em me concentrar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Fisicamente sinto que estou em más condições.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

106
15. Estou cheio de planos.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totally Totally

16. Fico cansado(s) com bastante facilidade.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totally Totally

17. Tenho resultados bastante fracos.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totally Totally

18. Não me apeteca fazer nada.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totally Totally

19. Os meus pensamentos facilmente divagam.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totally Totally

20. Fisicamente sinto-me em boa forma.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totally Totally

Indique o seu grau de sonolência neste momento, utilizando a escala apresentada (qualquer número é válido) assinalando a opção que considere mais adequada.

1. Em alerta total
2.
3. Em alerta
4.
5. Nem em alerta nem sonolento
6.
7. Sonolento mas sem dificuldades em estar acordado
8.
9. Claramente sonolento, a combater o sono

Indique o seu grau de sonolência neste momento, utilizando a escala apresentada (qualquer número é válido) assinalando a opção que considere mais adequada.

1. Em alerta total, claramente acordado
2. Muito vivo, responsivo mas não no meu melhor
3. Bem, relativamente fresco
4. Um pouco cansado, não muito fresco
5. Moderadamente cansado, em baixo
6. Extremamente cansado, com dificuldades em concentrar-me
7. Completamente exausto, incapaz de funcionar de forma eficaz

107
Como se sente neste preciso momento?

Assinale o número que melhor representa a sua resposta em todas as dimensões indicadas.

<table>
<thead>
<tr>
<th>Positivo</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triste</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Descansado</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Aborrecido</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Bem</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Tensão</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Negativo

<table>
<thead>
<tr>
<th>Contente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cansado</td>
</tr>
<tr>
<td>Alerta</td>
</tr>
<tr>
<td>Mal</td>
</tr>
<tr>
<td>Relaxado</td>
</tr>
</tbody>
</table>

Assinale, com uma cruz ao longo da linha, em todas as dimensões indicadas:

- Tranquilo
- Depressão
- Bem-humorado
- Alegria
- Furioso
- Apático
- Enérgico
- Cheio de energia
- Estourado
- Com ideias claras
- Confuso

108
Segue-se uma série de frases que são habitualmente utilizadas para descrever pessoas. Leia cada uma delas e assinale com uma cruz (X) o algarismo da direita que melhor indica como se sente neste momento. Não há respostas certas ou erradas afirmações que permitem descrever o seu trabalho. Não demore muito tempo em cada frase; responda de modo a descrever o melhor possível a maneira como se sente agora.

<table>
<thead>
<tr>
<th></th>
<th>Quase nunca</th>
<th>Algumas vezes</th>
<th>Frequente</th>
<th>Quase sempre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sinto-me calmo(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2. Sinto-me seguro(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3. Estou tenso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4. Sinto-me cansado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5. Sinto-me à vontade</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6. Sinto-me perturbado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7. Presentemente, preocupo-me com possíveis desgraças</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8. Sinto-me satisfeito(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9. Sinto-me amedrontado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10. Sinto-me confortável</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11. Sinto-me autoconfiante</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>12. Sinto-me nervoso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13. Sinto-me trêmulo(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>14. Sinto-me inseguro(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>15. Sinto-me descontraído(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16. Sinto-me contente</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17. Estou preocupado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>18. Sinto-me confuso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>19. Sinto-me firme</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20. Sinto-me bem</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Segue-se uma série de fatores que podem contribuir para a qualidade do alojamento facultado na sua estadia. Utilizando a escala apresentada, comece por descrever o nível geral da qualidade do alojamento na estadia que acabou de realizar, passando depois para a identificação dos fatores que na sua opinião estão na origem desse nível de qualidade.

No geral como avalia a qualidade do alojamento nesta estadia

![Escolha de opção de qualidade do alojamento]

Quais dos fatores que mais contribuíram para o nível de qualidade

a. Localização do alojamento

![Escolha de opção de localização do alojamento]
b. Em termos de interesse para si, como classifica as áreas circundantes ao alojamento
 Totalmente desinteressantes 1 2 3 4 5 6 7 8 9 Extremamente interessantes

c. Em termos gerais como classificaria as infra-estruturas presentes (ex: Ginásio, piscina)
 Inexistentes 1 2 3 4 5 6 7 8 9 10 Excelentes

d. Isolamento acústico do seu quarto
 Extremamente ruinoso 1 2 3 4 5 6 7 8 9 Excelente

e. Luz natural do seu quarto
 Inexistente 1 2 3 4 5 6 7 8 9 Excelente

f. Conforto da sua cama
 Extremamente desconfortável 1 2 3 4 5 6 7 8 9 Excelente

 g. Desafogo da vista da janela do seu quarto
 Inexistente 1 2 3 4 5 6 7 8 9 Excelente

No geral como classifica as actividades lúdicas realizadas por si, durante a estadia

 Inexistentes 1 2 3 4 5 6 7 8 9 Excelentes

Se é do sexo feminino, se ainda não atingiu a menopausa e uma vez que neste estudo serão avaliados níveis hormonais, necessitamos de algumas informações acerca do seu ciclo menstrual (se aplicável).

Diga-nos por favor a data da sua última menstruação (1º dia) ______/_____/_______ e indique também a data de hoje: ______/_____/_______
ANEXO E – Questionário II Momento Final

Instruções

Seguidamente vai encontrar várias afirmações relativas à forma como se sente neste momento. Indique em que medida a afirmação descreve a sua opinião, utilizando a escala apresentada.

<table>
<thead>
<tr>
<th>1. Sinto-me cansado(a).</th>
<th>Discordo</th>
<th>Não concordo nem discordo</th>
<th>Concordo</th>
<th>Discordo Totalmente</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sinto-me muito activo(a).</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Pensar exige esforço.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Fisicamente sinto-me exausto(a).</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sinto-me com vontade de fazer coisas boas.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Sinto-me em forma.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Faço bastante coisas durante o dia.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Quando estou a fazer algo, consigo-me concentrar.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Sinto-me fraco(a).</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Não consigo fazer muitas coisas durante o dia.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Consigo-me concentrar.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Sinto-me descansado(a).</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Sinto dificuldades em me concentrar.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Fisicamente sinto que estou em más condições.</td>
<td>Discordo</td>
<td>Não concordo nem discordo</td>
<td>Concordo</td>
<td>Discordo Totalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. Estou chelo de planos.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totalmente

16. Fico cansad(a) com bastante facilidade.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totalmente

17. Tenho resultados bastante fracos.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totalmente

18. Não me apetece fazer nada.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totalmente

19. Os meus pensamentos facilmente divagam.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totalmente

20. Fisicamente sinto-me em boa forma.
 Discordo Discordo Não concordo nem discordo Concordo Concordo
 Totalmente
Indique o seu grau de sonolência neste momento, utilizando a escala apresentada (qualquer número é válido) assinalando a opção que considere mais adequada.

1. Em alerta total
2. Em alerta
3. Nem em alerta nem sonolento
4. Sonolento mas sem dificuldades em estar acordado
5. Claramente sonolento, a combater o sono

Indique o seu grau de sonolência neste momento, utilizando a escala apresentada (qualquer número é válido) assinalando a opção que considere mais adequada.

1. Em alerta total, claramente acordado
2. Muito vivo, responsivo mas não no meu melhor
3. Bem, relativamente fresco
4. Um pouco cansado, não muito fresco
5. Moderadamente cansado, em baixo
6. Extremamente cansado, com dificuldades em concentrar-me
7. Completamente exausto, incapaz de funcionar de forma eficaz
Como se sente neste preciso momento?

Assinale o número que melhor representa a sua resposta em todas as dimensões indicadas.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descansado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aborrecido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assinale, com uma cruz ao longo da linha, em todas as dimensões indicadas:

- Tranquilo
- Deprimido
- Bem-humorado
- Apático
- Cheio de energia
- Com ideias claras
- Tensão
- Alegre
- Furioso
- Energético
- Estourado
- Confuso
Segue-se uma série de frases que são habitualmente utilizadas para descrever pessoas. Leia cada uma delas e assinale com uma cruz (x) o algarismo da direita que melhor indica como se sente neste momento. Não há respostas certas ou erradas afirmações que permitem descrever o seu trabalho. Não demore muito tempo em cada frase; responda de modo a descrever o melhor possível a maneira como se sente agora.

<table>
<thead>
<tr>
<th>Frase</th>
<th>Quase nunca</th>
<th>Algumas vezes</th>
<th>Frequentemente</th>
<th>Quase sempre</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sinto-me calmo(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2. Sinto-me seguro(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3. Estou tenso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4. Sinto-me cansado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5. Sinto-me à vontade</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6. Sinto-me perturbado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7. Presentemente, preocupo-me com possíveis desgraças</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8. Sinto-me satisfeito(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9. Sinto-me amedrontado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10. Sinto-me confortável</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11. Sinto-me autoconfiante</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>12. Sinto-me nervoso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13. Sinto-me trémulo(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>14. Sinto-me indeciso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>15. Sinto-me descontraído(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16. Sinto-me contente</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17. Estou preocupado(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>18. Sinto-me confuso(a)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>19. Sinto-me firme</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20. Sinto-me bem</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Segue-se agora a apresentação de um instrumento que pode contribuir para o nível de exigência de um voo. Utilizando a escala apresentada, comece por descrever o nível geral de exigência de voo que acabou de realizar, passando depois para a identificação dos fatores que na sua opinião estão na origem desse nível de exigência.

No geral como avalia o nível de exigência do voo que acabou de realizar:

- Nada exigente: 0
- Exigente: 1
- Muito exigente: 2
- Extremamente exigente: 3

Quais os fatores que mais contribuíram para o nível de exigência:

a. Número de passageiros

- Nada exigente: 0
- Exigente: 1
- Muito exigente: 2
- Extremamente exigente: 3

b. Duração do voo

- Nada exigente: 0
- Exigente: 1
- Muito exigente: 2
- Extremamente exigente: 3
c. Meteorologia

<table>
<thead>
<tr>
<th>Nada exigente</th>
<th>Exigente</th>
<th>Muito exigente</th>
<th>Extremamente exigente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

d. Última perna do dia

<table>
<thead>
<tr>
<th>Nada exigente</th>
<th>Exigente</th>
<th>Muito exigente</th>
<th>Extremamente exigente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

e. Outro, indique qual.

<table>
<thead>
<tr>
<th>Nada exigente</th>
<th>Exigente</th>
<th>Muito exigente</th>
<th>Extremamente exigente</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
ANEXO F – Escala da Experiências de Recuperação

Sensibilidade dos Itens

A análise da sensibilidade dos itens permite-nos verificar que na sua maioria, os itens abrangem a totalidade da amplitude da escala de medida (1- “Discordo Totalmente” a 5 “Concordo Totalmente”). Adicionalmente, nenhum dos itens viola grosseiramente a normalidade, Assimetria <3 e Achatamento <8 (Kline, 2011).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Median</th>
<th>Skewness</th>
<th>Std. Error of</th>
<th>Std. Error of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Valid</td>
<td>Missing</td>
<td>Mediana</td>
<td>Skewness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Median</td>
</tr>
<tr>
<td>NRec1</td>
<td>80</td>
<td>4,0</td>
<td>-748</td>
<td>269</td>
<td>,622</td>
</tr>
<tr>
<td>NRec2</td>
<td>80</td>
<td>4,0</td>
<td>-1,072</td>
<td>269</td>
<td>1,900</td>
</tr>
<tr>
<td>NRec3</td>
<td>80</td>
<td>4,0</td>
<td>-305</td>
<td>269</td>
<td>-898</td>
</tr>
<tr>
<td>NRec4</td>
<td>80</td>
<td>3,5</td>
<td>-338</td>
<td>269</td>
<td>-1,001</td>
</tr>
<tr>
<td>NRec5</td>
<td>80</td>
<td>3,0</td>
<td>232</td>
<td>269</td>
<td>-953</td>
</tr>
<tr>
<td>NRec6</td>
<td>80</td>
<td>4,0</td>
<td>-529</td>
<td>269</td>
<td>-364</td>
</tr>
<tr>
<td>NRec7</td>
<td>80</td>
<td>4,0</td>
<td>-796</td>
<td>269</td>
<td>312</td>
</tr>
<tr>
<td>NRec8</td>
<td>80</td>
<td>4,0</td>
<td>-966</td>
<td>269</td>
<td>459</td>
</tr>
<tr>
<td>NRec9</td>
<td>80</td>
<td>4,0</td>
<td>-656</td>
<td>269</td>
<td>-279</td>
</tr>
<tr>
<td>NRec10</td>
<td>80</td>
<td>4,0</td>
<td>-699</td>
<td>269</td>
<td>179</td>
</tr>
<tr>
<td>NRec11</td>
<td>80</td>
<td>4,0</td>
<td>-801</td>
<td>269</td>
<td>1,058</td>
</tr>
<tr>
<td>NRec12</td>
<td>80</td>
<td>4,0</td>
<td>-564</td>
<td>269</td>
<td>-239</td>
</tr>
<tr>
<td>NRec13</td>
<td>80</td>
<td>4,0</td>
<td>-400</td>
<td>269</td>
<td>-204</td>
</tr>
<tr>
<td>NRec14</td>
<td>80</td>
<td>4,0</td>
<td>-400</td>
<td>269</td>
<td>-362</td>
</tr>
<tr>
<td>NRec15</td>
<td>80</td>
<td>4,0</td>
<td>-1,135</td>
<td>269</td>
<td>2,250</td>
</tr>
<tr>
<td>NRec16</td>
<td>80</td>
<td>4,0</td>
<td>-859</td>
<td>269</td>
<td>,940</td>
</tr>
</tbody>
</table>

Validade da Estrutura Fatorial da Escala

A análise fatorial convergiu para uma solução de três dimensões, observando-se um KMO=0,753 considerado médio por Marôco (2010), sendo possível prosseguir para o teste de Esfericidade de Bartlett’s, sendo o valor p<.001, concluiu-se que as variáveis estão correlacionadas significativamente. As dimensões explicam 65.112% da variância total.
AFE

<table>
<thead>
<tr>
<th>Tabela 15: KMO e Teste de esfericidade Bartlett's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiser-Meyer-Olkin Measure of Sampling Adequacy</td>
</tr>
<tr>
<td>Bartlett's Test of Sphericity Approx. Chi-Square</td>
</tr>
<tr>
<td>Df</td>
</tr>
<tr>
<td>Sig.</td>
</tr>
</tbody>
</table>

Tabela 16: Total variância explicada

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>5.743</td>
<td>35.893</td>
<td>35.893</td>
</tr>
<tr>
<td>2</td>
<td>2.819</td>
<td>17.622</td>
<td>53.515</td>
</tr>
<tr>
<td>3</td>
<td>1.856</td>
<td>11.597</td>
<td>65.112</td>
</tr>
<tr>
<td>4</td>
<td>0.964</td>
<td>6.025</td>
<td>71.137</td>
</tr>
<tr>
<td>5</td>
<td>0.870</td>
<td>5.439</td>
<td>76.576</td>
</tr>
<tr>
<td>6</td>
<td>0.744</td>
<td>4.650</td>
<td>81.226</td>
</tr>
<tr>
<td>7</td>
<td>0.595</td>
<td>3.718</td>
<td>84.944</td>
</tr>
<tr>
<td>8</td>
<td>0.496</td>
<td>3.103</td>
<td>88.047</td>
</tr>
<tr>
<td>9</td>
<td>0.474</td>
<td>2.963</td>
<td>91.009</td>
</tr>
<tr>
<td>10</td>
<td>0.393</td>
<td>2.457</td>
<td>93.467</td>
</tr>
<tr>
<td>11</td>
<td>0.295</td>
<td>1.843</td>
<td>95.309</td>
</tr>
<tr>
<td>12</td>
<td>0.219</td>
<td>1.367</td>
<td>96.677</td>
</tr>
<tr>
<td>13</td>
<td>0.187</td>
<td>1.168</td>
<td>97.845</td>
</tr>
<tr>
<td>14</td>
<td>0.131</td>
<td>0.816</td>
<td>98.661</td>
</tr>
<tr>
<td>15</td>
<td>0.115</td>
<td>0.721</td>
<td>99.382</td>
</tr>
<tr>
<td>16</td>
<td>0.099</td>
<td>0.618</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Pela análise dos valores de saturação apresentados na Tabela 18, a análise fatorial convergiu para uma solução de três dimensões considerando um nível de saturação (> 0.5). Após análise semântica do conteúdo dos itens, a primeira dimensão extraída “Controlo/Relaxamento” apresenta itens relacionados com o controlo das experiências de recuperação e relaxamento explicando 35,893% da variância, a segunda dimensão apresenta itens relacionados com a “Mestria” explica 17,692% da variância, a terceira dimensão apresenta itens relacionados com o “Distanciamento Psicológico” explica 11,597% da variância.
Fiabilidade das Dimensões

<table>
<thead>
<tr>
<th></th>
<th>Scale Mean if Item Deleted</th>
<th>Scale Variance if Item Deleted</th>
<th>Corrected Item-Total Correlation</th>
<th>Cronbach's Alpha if Item Deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRec1</td>
<td>54.563</td>
<td>75.085</td>
<td>.395</td>
<td>.866</td>
</tr>
<tr>
<td>NRec2</td>
<td>54.475</td>
<td>75.721</td>
<td>.354</td>
<td>.867</td>
</tr>
<tr>
<td>NRec3</td>
<td>55.088</td>
<td>73.321</td>
<td>.367</td>
<td>.869</td>
</tr>
<tr>
<td>NRec4</td>
<td>55.063</td>
<td>70.161</td>
<td>.452</td>
<td>.866</td>
</tr>
<tr>
<td>NRec5</td>
<td>55.525</td>
<td>71.645</td>
<td>.429</td>
<td>.866</td>
</tr>
<tr>
<td>NRec6</td>
<td>54.775</td>
<td>69.847</td>
<td>.638</td>
<td>.855</td>
</tr>
<tr>
<td>NRec7</td>
<td>54.663</td>
<td>70.429</td>
<td>.642</td>
<td>.855</td>
</tr>
<tr>
<td>NRec8</td>
<td>54.663</td>
<td>70.986</td>
<td>.605</td>
<td>.856</td>
</tr>
<tr>
<td>NRec9</td>
<td>54.450</td>
<td>70.048</td>
<td>.639</td>
<td>.855</td>
</tr>
<tr>
<td>NRec10</td>
<td>54.650</td>
<td>71.851</td>
<td>.542</td>
<td>.859</td>
</tr>
<tr>
<td>NRec11</td>
<td>54.463</td>
<td>75.138</td>
<td>.481</td>
<td>.863</td>
</tr>
<tr>
<td>NRec12</td>
<td>54.650</td>
<td>74.863</td>
<td>.412</td>
<td>.865</td>
</tr>
<tr>
<td>NRec13</td>
<td>54.525</td>
<td>71.999</td>
<td>.662</td>
<td>.855</td>
</tr>
<tr>
<td>NRec14</td>
<td>54.700</td>
<td>73.377</td>
<td>.528</td>
<td>.860</td>
</tr>
<tr>
<td>NRec15</td>
<td>54.513</td>
<td>72.987</td>
<td>.566</td>
<td>.859</td>
</tr>
<tr>
<td>NRec16</td>
<td>54.675</td>
<td>73.691</td>
<td>.480</td>
<td>.862</td>
</tr>
</tbody>
</table>

120
Tabela 19: Consistência interna (Controlo/Relaxamento)

<table>
<thead>
<tr>
<th>Cronbach's</th>
<th>Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.86</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabela 20: Consistência interna (Distanciamento Psicológico)

<table>
<thead>
<tr>
<th>Cronbach's</th>
<th>Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.79</td>
<td>2</td>
</tr>
</tbody>
</table>

Tabela 21: Consistência interna (Mestria)

<table>
<thead>
<tr>
<th>Cronbach's</th>
<th>Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.89</td>
<td>6</td>
</tr>
</tbody>
</table>
Sensibilidade das Dimensões

Tabela 22: Sensibilidade dimensões

<table>
<thead>
<tr>
<th></th>
<th>Controlo/Relaxamento</th>
<th>Mestria</th>
<th>Distanciamento Psicológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mean</td>
<td>3,0882</td>
<td>3,3141</td>
<td>3,7396</td>
</tr>
<tr>
<td>Median</td>
<td>3,0000</td>
<td>3,55404</td>
<td>3,76484</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>75703</td>
<td>-380</td>
<td>-1,169</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.183</td>
<td>0.269</td>
<td>0.269</td>
</tr>
<tr>
<td>Std. Error of Skewness</td>
<td>0.213</td>
<td>0.370</td>
<td>2.655</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-3.394</td>
<td>0.532</td>
<td>0.532</td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td>4.423</td>
<td>1.88</td>
<td>1.00</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.25</td>
<td>4.38</td>
<td>5.00</td>
</tr>
<tr>
<td>Maximum</td>
<td>4.88</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Figura 1: Histograma (Distanciamento Psicológico)
Figura 2: Histograma (Controlo/Relaxamento)

Histógrafo

Frequência

Controlo/Relaxamento

Figura 3: Histograma (Mestria)

Histógrafo

Frequência

Mestria

123
ANEXO G – Escala da Fadiga

Sensibilidade dos Itens

Na Tabela 24 constata-se que nenhum item apresenta valores de assimetria e achatamento reveladores de violações grosseiras à distribuição normal, Assimetria $<$3 e Achatamento $<$8 (Kline, 2011).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Median</th>
<th>Skewness</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Kurtosis</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cis1</td>
<td>82</td>
<td>3,0</td>
<td>0,284</td>
<td>0,266</td>
<td>-0,798</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Inv2</td>
<td>82</td>
<td>3,0</td>
<td>-0,045</td>
<td>0,266</td>
<td>-0,806</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis3</td>
<td>82</td>
<td>2,0</td>
<td>0,610</td>
<td>0,266</td>
<td>-0,442</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis4</td>
<td>82</td>
<td>2,0</td>
<td>0,840</td>
<td>0,266</td>
<td>0,611</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Inv5</td>
<td>82</td>
<td>2,0</td>
<td>0,427</td>
<td>0,266</td>
<td>-0,170</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Inv6</td>
<td>82</td>
<td>2,0</td>
<td>0,343</td>
<td>0,266</td>
<td>-0,393</td>
<td>0,526</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Inv7</td>
<td>82</td>
<td>2,0</td>
<td>0,738</td>
<td>0,266</td>
<td>0,499</td>
<td>0,526</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Inv8</td>
<td>82</td>
<td>2,0</td>
<td>0,995</td>
<td>0,266</td>
<td>1,217</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis9</td>
<td>82</td>
<td>2,0</td>
<td>0,485</td>
<td>0,266</td>
<td>-0,189</td>
<td>0,526</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cis10</td>
<td>82</td>
<td>2,0</td>
<td>0,952</td>
<td>0,266</td>
<td>1,330</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Inv11</td>
<td>82</td>
<td>2,0</td>
<td>1,093</td>
<td>0,266</td>
<td>1,030</td>
<td>0,526</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Inv12</td>
<td>82</td>
<td>3,0</td>
<td>0,443</td>
<td>0,266</td>
<td>-0,711</td>
<td>0,526</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cis13</td>
<td>82</td>
<td>2,0</td>
<td>0,799</td>
<td>0,266</td>
<td>0,194</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis14</td>
<td>82</td>
<td>2,0</td>
<td>0,684</td>
<td>0,266</td>
<td>0,397</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis15</td>
<td>82</td>
<td>2,0</td>
<td>0,305</td>
<td>0,266</td>
<td>-0,457</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis16</td>
<td>82</td>
<td>3,0</td>
<td>0,198</td>
<td>0,266</td>
<td>-0,799</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis17</td>
<td>82</td>
<td>2,0</td>
<td>0,584</td>
<td>0,266</td>
<td>0,408</td>
<td>0,526</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cis18</td>
<td>82</td>
<td>2,0</td>
<td>0,609</td>
<td>0,266</td>
<td>-0,296</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cis19</td>
<td>82</td>
<td>3,0</td>
<td>0,173</td>
<td>0,266</td>
<td>-1,060</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Inv20</td>
<td>82</td>
<td>2,0</td>
<td>0,451</td>
<td>0,266</td>
<td>-0,681</td>
<td>0,526</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Validade da Estrutura Fatorial da Escala

De forma a validar a estrutura fatorial constante na literatura, foi efetuada uma análise fatorial exploratória (AFE) que convergiu para uma solução de cinco dimensões, resultando num KMO=0.852, que explica 72.449% da variância total.

Primeira AFE

Tabela 24: KMO e Teste de esfericidade Bartlett’s

<table>
<thead>
<tr>
<th>Kaiser-Meyer-Olkin Measure of Sampling Adequacy</th>
<th>Bartlett’s Test of Sphericity</th>
<th>Approx. Chi-Square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>.852</td>
<td></td>
<td>1046,889</td>
<td>190</td>
<td>.000</td>
</tr>
</tbody>
</table>

Tabela 25: Total variância explicada

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Eigenvalues</th>
<th>Extraction Sums of Squared Loadings</th>
<th>Rotation Sums of Squared Loadings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>% of Variance</td>
<td>Cumulative %</td>
</tr>
<tr>
<td>1</td>
<td>8,524</td>
<td>42,622</td>
<td>42,622</td>
</tr>
<tr>
<td>2</td>
<td>2,063</td>
<td>10,316</td>
<td>52,939</td>
</tr>
<tr>
<td>3</td>
<td>1,621</td>
<td>8,106</td>
<td>61,044</td>
</tr>
<tr>
<td>4</td>
<td>1,158</td>
<td>5,790</td>
<td>66,835</td>
</tr>
<tr>
<td>5</td>
<td>1,123</td>
<td>5,615</td>
<td>72,449</td>
</tr>
<tr>
<td>6</td>
<td>.865</td>
<td>4,323</td>
<td>76,773</td>
</tr>
<tr>
<td>7</td>
<td>.712</td>
<td>3,560</td>
<td>80,332</td>
</tr>
<tr>
<td>8</td>
<td>.575</td>
<td>2,876</td>
<td>83,208</td>
</tr>
<tr>
<td>9</td>
<td>.530</td>
<td>2,651</td>
<td>85,859</td>
</tr>
<tr>
<td>10</td>
<td>.478</td>
<td>2,390</td>
<td>88,250</td>
</tr>
<tr>
<td>11</td>
<td>.425</td>
<td>2,124</td>
<td>90,374</td>
</tr>
<tr>
<td>12</td>
<td>.362</td>
<td>1,811</td>
<td>92,185</td>
</tr>
<tr>
<td>13</td>
<td>.309</td>
<td>1,547</td>
<td>93,733</td>
</tr>
<tr>
<td>14</td>
<td>.265</td>
<td>1,325</td>
<td>95,058</td>
</tr>
<tr>
<td>15</td>
<td>.230</td>
<td>1,151</td>
<td>96,209</td>
</tr>
<tr>
<td>16</td>
<td>.206</td>
<td>1,028</td>
<td>97,237</td>
</tr>
<tr>
<td>17</td>
<td>.182</td>
<td>.908</td>
<td>98,145</td>
</tr>
<tr>
<td>18</td>
<td>.155</td>
<td>.775</td>
<td>98,921</td>
</tr>
<tr>
<td>19</td>
<td>.112</td>
<td>.558</td>
<td>99,479</td>
</tr>
<tr>
<td>20</td>
<td>.104</td>
<td>.521</td>
<td>100,000</td>
</tr>
</tbody>
</table>
Tabela 26: Matriz componente rodada

<table>
<thead>
<tr>
<th></th>
<th>Component 1</th>
<th>Component 2</th>
<th>Component 3</th>
<th>Component 4</th>
<th>Component 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cis1</td>
<td>0.771</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv2</td>
<td></td>
<td>0.800</td>
<td></td>
<td></td>
<td>0.831</td>
</tr>
<tr>
<td>Cis3</td>
<td></td>
<td></td>
<td></td>
<td>0.805</td>
<td></td>
</tr>
<tr>
<td>Cis4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.790</td>
</tr>
<tr>
<td>Inv5</td>
<td></td>
<td></td>
<td>0.748</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inv12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cis15</td>
<td></td>
<td></td>
<td></td>
<td>0.720</td>
<td></td>
</tr>
<tr>
<td>Cis16</td>
<td></td>
<td></td>
<td></td>
<td>0.545</td>
<td>0.775</td>
</tr>
<tr>
<td>Cis17</td>
<td></td>
<td></td>
<td></td>
<td>0.598</td>
<td></td>
</tr>
<tr>
<td>Cis18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.609</td>
</tr>
<tr>
<td>Cis19</td>
<td></td>
<td></td>
<td></td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>Inv20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.841</td>
</tr>
</tbody>
</table>

Segunda AFE (sem item Inv2, Cis3 e Cis 16)

Na observação da Tabela 40, considerando um nível de saturação (> 0.5). Extraíram-se os seguintes itens Inv2 e Cis3 por não saturarem em nenhuma dimensão e o item Cis16 por apresentar uma saturação em duas dimensões. Efetuou-se uma segunda AFE apresentando um valor de KMO=.852 considerado bom por Pestana e Gageiro (2000), cumprindo os pressupostos segui-se para o teste de Esfericidade de Bartlett’s, sendo o valor p<.001, concluiu-se que as variáveis estão correlacionadas significativamente.
Tabela 27: KMÔ e Teste de esfericidade Bartlett's

Kaiser-Meyer-Olkin Measure of Sampling Adequacy	.852	
Bartlett's Test of Sphericity	Approx. Chi-Square	888,174
Df	136	
Sig.	.000	

Tabela 28: Total variância explicada

<table>
<thead>
<tr>
<th>Component</th>
<th>Total</th>
<th>Variance</th>
<th>% of</th>
<th>Cumulative</th>
<th>Total</th>
<th>Variance</th>
<th>% of</th>
<th>Cumulative</th>
<th>Total</th>
<th>Variance</th>
<th>% of</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,534</td>
<td>44,319</td>
<td>44,319</td>
<td>7,534</td>
<td>44,319</td>
<td>4,195</td>
<td>24,677</td>
<td>24,677</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,918</td>
<td>11,281</td>
<td>55,600</td>
<td>1,918</td>
<td>11,281</td>
<td>3,904</td>
<td>22,963</td>
<td>47,640</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,566</td>
<td>9,213</td>
<td>64,813</td>
<td>1,566</td>
<td>9,213</td>
<td>2,507</td>
<td>14,750</td>
<td>62,389</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,107</td>
<td>6,511</td>
<td>71,324</td>
<td>1,107</td>
<td>6,511</td>
<td>1,519</td>
<td>8,935</td>
<td>71,324</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>.978</td>
<td>5,751</td>
<td>77,075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.598</td>
<td>3,518</td>
<td>80,593</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.533</td>
<td>3,133</td>
<td>83,726</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.497</td>
<td>2,923</td>
<td>86,648</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>.467</td>
<td>2,750</td>
<td>89,398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.378</td>
<td>2,222</td>
<td>91,620</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>.289</td>
<td>1,701</td>
<td>93,322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.265</td>
<td>1,560</td>
<td>94,881</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>.250</td>
<td>1,471</td>
<td>96,352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.208</td>
<td>1,226</td>
<td>97,578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.178</td>
<td>1,046</td>
<td>98,624</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>.121</td>
<td>.709</td>
<td>99,333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>.113</td>
<td>.667</td>
<td>100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A análise fatorial convergiu para uma solução de quatro dimensões que explicam 71,324% da variância total. A análise semântica do conteúdo dos itens com base na literatura resultou na denominação das quatro dimensões: “Fadiga Subjetiva”, explica 44,319% da variância total, a “Concentração”, explica 11,281% da variância, a Motivação, explica
9,213% da variância e última dimensão apresenta itens relacionados com as "Atividades" explica 6,511% da variância total explicada.

Fiabilidade das Dimensões

| Tabela 30: Consistência interna (Fadiga Subjetiva) |
|-----------------|----------|
| Cronbach's | Alpha N of Items |
| | .89 | 6 |

| Tabela 31: Consistência interna (Concentração) |
|-----------------|----------|
| Cronbach's | Alpha N of Items |
| | .89 | 5 |

| Tabela 32: Consistência interna (Motivação) |
|-----------------|----------|
| Cronbach's | Alpha N of Items |
| | .76 | 4 |

| Tabela 33: Consistência interna (Concentração) |
|-----------------|----------|
| Cronbach's | Alpha N of Items |
| | .63 | 2 |
Sensibilidade das Dimensões

Tabela 34: Sensibilidade dimensões

<table>
<thead>
<tr>
<th></th>
<th>Fadiga Subjetiva</th>
<th>Concentração</th>
<th>Motivação</th>
</tr>
</thead>
<tbody>
<tr>
<td>N Valid</td>
<td>82</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mean</td>
<td>3,0882</td>
<td>2,5305</td>
<td>2,4195</td>
</tr>
<tr>
<td>Median</td>
<td>3,0000</td>
<td>73522</td>
<td>71844</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>.75703</td>
<td>.397</td>
<td>.646</td>
</tr>
<tr>
<td>Skewness</td>
<td>.183</td>
<td>.266</td>
<td>.266</td>
</tr>
<tr>
<td>Std. Error of Skewness</td>
<td>.213</td>
<td>-.363</td>
<td>.403</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-.394</td>
<td>.526</td>
<td>.526</td>
</tr>
<tr>
<td>Std. Error of Kurtosis</td>
<td>.423</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td>Minimum</td>
<td>1,25</td>
<td>4,17</td>
<td>4,20</td>
</tr>
<tr>
<td>Maximum</td>
<td>4,88</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

Figura 4: Histograma (Fadiga Subjetiva)

![Histograma](Image)
Figura 5: Histograma (Concentração)

Figura 6: Histograma (Atividade)

131
ANEXO H: MANOVA – Efeito do tipo de voo (NB;WB) nas dimensões CIS Fadiga no Momento Inicial (MIA)

Tabela 35: Estatística Descritiva

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>2,6954</td>
<td>.79566</td>
<td>29</td>
</tr>
<tr>
<td>CIS1 FadigaSubjectiva WB</td>
<td>2,4403</td>
<td>.69113</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>2,5305</td>
<td>.73522</td>
<td>82</td>
</tr>
<tr>
<td>NB</td>
<td>2,6069</td>
<td>.83919</td>
<td>29</td>
</tr>
<tr>
<td>CIS1 Concentração WB</td>
<td>2,3170</td>
<td>.62810</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>2,4195</td>
<td>.71844</td>
<td>82</td>
</tr>
<tr>
<td>NB</td>
<td>2,5259</td>
<td>.67594</td>
<td>29</td>
</tr>
<tr>
<td>CIS1 Motivação WB</td>
<td>2,3821</td>
<td>.69959</td>
<td>53</td>
</tr>
<tr>
<td>Total</td>
<td>2,4329</td>
<td>.69060</td>
<td>82</td>
</tr>
</tbody>
</table>

Tabela 36: Teste M de Box

Box's Test of Equality of Covariance Matrices

<table>
<thead>
<tr>
<th>Box's M</th>
<th>19,511</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>3,101</td>
</tr>
<tr>
<td>df1</td>
<td>6</td>
</tr>
<tr>
<td>df2</td>
<td>21771,846</td>
</tr>
<tr>
<td>Sig.</td>
<td>.005</td>
</tr>
</tbody>
</table>
Tabela 37: Testes Multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.943</td>
<td>430,508b</td>
<td>3,000</td>
<td>78,000</td>
<td>.000</td>
<td>1291,524</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.057</td>
<td>430,508b</td>
<td>3,000</td>
<td>78,000</td>
<td>.000</td>
<td>1291,524</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>16,558</td>
<td>430,508b</td>
<td>3,000</td>
<td>78,000</td>
<td>.000</td>
<td>1291,524</td>
<td>1,000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>16,558</td>
<td>430,508b</td>
<td>3,000</td>
<td>78,000</td>
<td>.000</td>
<td>1291,524</td>
<td>1,000</td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.040</td>
<td>1.091b</td>
<td>3,000</td>
<td>78,000</td>
<td>.358</td>
<td>3.274</td>
<td>.284</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.960</td>
<td>1.091b</td>
<td>3,000</td>
<td>78,000</td>
<td>.358</td>
<td>3.274</td>
<td>.284</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>.042</td>
<td>1.091b</td>
<td>3,000</td>
<td>78,000</td>
<td>.358</td>
<td>3.274</td>
<td>.284</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>.042</td>
<td>1.091b</td>
<td>3,000</td>
<td>78,000</td>
<td>.358</td>
<td>3.274</td>
<td>.284</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 38: Teste de Levene

Levene's Test of Equality of Error Variancesa

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS1FadigaSubjectiva</td>
<td>2.796</td>
<td>1</td>
<td>80</td>
<td>.098</td>
</tr>
<tr>
<td>CIS1Concentração</td>
<td>5.588</td>
<td>1</td>
<td>80</td>
<td>.021</td>
</tr>
<tr>
<td>CIS1Motivação</td>
<td>.003</td>
<td>1</td>
<td>80</td>
<td>.959</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a Design: Intercept + Equipamento
Tabela 39: Testes de efeito no compósito multivariado

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>CIS1FadigaSubjectiva</td>
<td>1,220a</td>
<td>1</td>
<td>1,220</td>
<td>2,293</td>
<td>.134</td>
</tr>
<tr>
<td></td>
<td>CIS1Concentração</td>
<td>1,575a</td>
<td>1</td>
<td>1,575</td>
<td>3,133</td>
<td>.081</td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>.388a</td>
<td>1</td>
<td>.388</td>
<td>.811</td>
<td>.371</td>
</tr>
<tr>
<td></td>
<td>CIS1FadigaSubjectiva</td>
<td>494,369</td>
<td>1</td>
<td>494,369</td>
<td>929,165</td>
<td>.000</td>
</tr>
<tr>
<td>Intercept</td>
<td>CIS1Concentração</td>
<td>454,438</td>
<td>1</td>
<td>454,438</td>
<td>903,605</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>451,500</td>
<td>1</td>
<td>451,500</td>
<td>944,473</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>CIS1FadigaSubjectiva</td>
<td>1,220</td>
<td>1</td>
<td>1,220</td>
<td>2,293</td>
<td>.134</td>
</tr>
<tr>
<td>Equipment</td>
<td>CIS1Concentração</td>
<td>1,575</td>
<td>1</td>
<td>1,575</td>
<td>3,133</td>
<td>.081</td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>.388</td>
<td>1</td>
<td>.388</td>
<td>.811</td>
<td>.371</td>
</tr>
<tr>
<td></td>
<td>CIS1FadigaSubjectiva</td>
<td>42,565</td>
<td>80</td>
<td>42,565</td>
<td>.532</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>CIS1Concentração</td>
<td>40,233</td>
<td>80</td>
<td>40,233</td>
<td>.503</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>38,244</td>
<td>80</td>
<td>38,244</td>
<td>.478</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1FadigaSubjectiva</td>
<td>568,861</td>
<td>82</td>
<td>568,861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CIS1Concentração</td>
<td>521,840</td>
<td>82</td>
<td>521,840</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>524,000</td>
<td>82</td>
<td>524,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1FadigaSubjectiva</td>
<td>43,785</td>
<td>81</td>
<td>43,785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>CIS1Concentração</td>
<td>41,809</td>
<td>81</td>
<td>41,809</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>38,631</td>
<td>81</td>
<td>38,631</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO I: MANOVA – Efeito do tipo de voo (NB;WB) nas medidas Fadiga Samet-Perei e Sonolência KSS no MIA

Tabela 40: Estatística Descriptiva

<table>
<thead>
<tr>
<th>Value Label</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipamento</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NB</td>
</tr>
<tr>
<td>2</td>
<td>WB</td>
</tr>
</tbody>
</table>

Tabela 41: Teste M de Box

Box's Test of Equality of Covariance Matrices*

<table>
<thead>
<tr>
<th>Box's M</th>
<th>1,632</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>.527</td>
</tr>
<tr>
<td>df1</td>
<td>3</td>
</tr>
<tr>
<td>df2</td>
<td>94326,514</td>
</tr>
<tr>
<td>Sig.</td>
<td>.663</td>
</tr>
</tbody>
</table>

Tabela 42: Testes Multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Observed Power*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>.845</td>
<td>214,550b</td>
<td>2,000</td>
<td>79,000</td>
<td>.000</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>.155</td>
<td>214,550b</td>
<td>2,000</td>
<td>79,000</td>
<td>.000</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>5,432</td>
<td>214,550b</td>
<td>2,000</td>
<td>79,000</td>
<td>.000</td>
<td>1,000</td>
</tr>
<tr>
<td>Roy’s Largest Root</td>
<td>5,432</td>
<td>214,550b</td>
<td>2,000</td>
<td>79,000</td>
<td>.000</td>
<td>1,000</td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>.140</td>
<td>6,445b</td>
<td>2,000</td>
<td>79,000</td>
<td>.003</td>
<td>.894</td>
</tr>
<tr>
<td>Equipamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>.860</td>
<td>6,445b</td>
<td>2,000</td>
<td>79,000</td>
<td>.003</td>
<td>.894</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>.163</td>
<td>6,445b</td>
<td>2,000</td>
<td>79,000</td>
<td>.003</td>
<td>.894</td>
</tr>
<tr>
<td>Roy’s Largest Root</td>
<td>.163</td>
<td>6,445b</td>
<td>2,000</td>
<td>79,000</td>
<td>.003</td>
<td>.894</td>
</tr>
</tbody>
</table>
Tabela 43: Teste de Levene

Levene's Test of Equality of Error Variances

<table>
<thead>
<tr>
<th>Source</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSS1</td>
<td>.701</td>
<td>1</td>
<td>80</td>
<td>.405</td>
</tr>
<tr>
<td>SammPerelli1</td>
<td>1.379</td>
<td>1</td>
<td>80</td>
<td>.244</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Equipamento

Tabela 44: Testes de efeito no compósito multivariado

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>KSS1</td>
<td>23,939</td>
<td>1</td>
<td>23,939</td>
<td>5,471</td>
<td>.022</td>
</tr>
<tr>
<td></td>
<td>SammPerelli1</td>
<td>17,544</td>
<td>1</td>
<td>17,544</td>
<td>12,420</td>
<td>.001</td>
</tr>
<tr>
<td>Intercept</td>
<td>KSS1</td>
<td>1233,208</td>
<td>1</td>
<td>1233,208</td>
<td>281,817</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>SammPerelli1</td>
<td>613,739</td>
<td>1</td>
<td>613,739</td>
<td>434,488</td>
<td>.000</td>
</tr>
<tr>
<td>Equipamento</td>
<td>KSS1</td>
<td>23,939</td>
<td>1</td>
<td>23,939</td>
<td>5,471</td>
<td>.022</td>
</tr>
<tr>
<td></td>
<td>SammPerelli1</td>
<td>17,544</td>
<td>1</td>
<td>17,544</td>
<td>12,420</td>
<td>.001</td>
</tr>
<tr>
<td>Error</td>
<td>KSS1</td>
<td>350,073</td>
<td>80</td>
<td>4,376</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerelli1</td>
<td>113,005</td>
<td>80</td>
<td>1,413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>KSS1</td>
<td>1615,000</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerelli1</td>
<td>737,000</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>SammPerelli1</td>
<td>374,012</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 45: Comparação de Médias

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Equipamento</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>KSS1</td>
<td>NB</td>
<td>4,621</td>
<td>.388</td>
<td>3,848</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,491</td>
<td>.287</td>
<td>2,919</td>
</tr>
<tr>
<td></td>
<td>NB</td>
<td>3,345</td>
<td>.221</td>
<td>2,906</td>
</tr>
<tr>
<td>SammPerelli1</td>
<td>WB</td>
<td>2,377</td>
<td>.163</td>
<td>2,052</td>
</tr>
</tbody>
</table>

136
ANEXO J: MANOVA – Efeito do tipo de voo (NB;WB) nas medidas de Fadiga no Momento Final (MFA)

<table>
<thead>
<tr>
<th>Tabela 46: Estatística Descriptiva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipamento</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>CIS2FadigaSubjectiva</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>CIS2Concentração</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>CIS2Motivação</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>KSS2</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>NB</td>
</tr>
<tr>
<td>SammPerelli2</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Tabela 47: Teste M de Box

<table>
<thead>
<tr>
<th>Box's Test of Equality of Covariance Matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box's M</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>df1</td>
</tr>
<tr>
<td>df2</td>
</tr>
<tr>
<td>Sig.</td>
</tr>
</tbody>
</table>
Tabela 48: Testes Multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.968</td>
<td>456,493</td>
<td>5,000</td>
<td>75,000</td>
<td>.000</td>
<td>2282,467</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.032</td>
<td>456,493</td>
<td>5,000</td>
<td>75,000</td>
<td>.000</td>
<td>2282,467</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>30,433</td>
<td>456,493</td>
<td>5,000</td>
<td>75,000</td>
<td>.000</td>
<td>2282,467</td>
<td>1,000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>30,433</td>
<td>456,493</td>
<td>5,000</td>
<td>75,000</td>
<td>.000</td>
<td>2282,467</td>
<td>1,000</td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.090</td>
<td>1,481</td>
<td>5,000</td>
<td>75,000</td>
<td>.206</td>
<td>7,404</td>
<td>.493</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.910</td>
<td>1,481</td>
<td>5,000</td>
<td>75,000</td>
<td>.206</td>
<td>7,404</td>
<td>.493</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>.099</td>
<td>1,481</td>
<td>5,000</td>
<td>75,000</td>
<td>.206</td>
<td>7,404</td>
<td>.493</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>.099</td>
<td>1,481</td>
<td>5,000</td>
<td>75,000</td>
<td>.206</td>
<td>7,404</td>
<td>.493</td>
</tr>
</tbody>
</table>

Tabela 49: Teste de Levene

<table>
<thead>
<tr>
<th>Levene's Test of Equality of Error Variances<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>CIS2FadigaSubjectiva</td>
</tr>
<tr>
<td>CIS2Concentração</td>
</tr>
<tr>
<td>CIS2Motivação</td>
</tr>
<tr>
<td>KSS2</td>
</tr>
<tr>
<td>SammPerelli2</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

^a Design: Intercept + Equipamento
<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjetiva</td>
<td>.825<sup>a</sup></td>
<td>1</td>
<td>.825</td>
<td>1.612</td>
<td>.208</td>
<td>1.612</td>
<td>.241</td>
<td></td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>.869<sup>b</sup></td>
<td>1</td>
<td>.869</td>
<td>1.281</td>
<td>.261</td>
<td>1.281</td>
<td>.201</td>
<td></td>
</tr>
<tr>
<td>CIS2Motivação</td>
<td>.006<sup>c</sup></td>
<td>1</td>
<td>.006</td>
<td>.009</td>
<td>.926</td>
<td>.009</td>
<td>.051</td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>.007<sup>d</sup></td>
<td>1</td>
<td>.007</td>
<td>.003</td>
<td>.955</td>
<td>.003</td>
<td>.050</td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>.034<sup>e</sup></td>
<td>1</td>
<td>.034</td>
<td>.020</td>
<td>.889</td>
<td>.020</td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjetiva</td>
<td>1101.899</td>
<td>1</td>
<td>1101.899</td>
<td>2152.565</td>
<td>.000</td>
<td>2152.565</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>801.383</td>
<td>1</td>
<td>801.383</td>
<td>1180.900</td>
<td>.000</td>
<td>1180.900</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>912.506</td>
<td>1</td>
<td>912.506</td>
<td>1269.031</td>
<td>.000</td>
<td>1269.031</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>3461.341</td>
<td>1</td>
<td>3461.341</td>
<td>1534.361</td>
<td>.000</td>
<td>1534.361</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>1903.441</td>
<td>1</td>
<td>1903.441</td>
<td>1116.696</td>
<td>.000</td>
<td>1116.696</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjetiva</td>
<td>.825</td>
<td>1</td>
<td>.825</td>
<td>1.612</td>
<td>.208</td>
<td>1.612</td>
<td>.241</td>
<td></td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>.869</td>
<td>1</td>
<td>.869</td>
<td>1.281</td>
<td>.261</td>
<td>1.281</td>
<td>.201</td>
<td></td>
</tr>
<tr>
<td>Equipamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2Motivação</td>
<td>.006</td>
<td>1</td>
<td>.006</td>
<td>.009</td>
<td>.926</td>
<td>.009</td>
<td>.051</td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>.007</td>
<td>1</td>
<td>.007</td>
<td>.003</td>
<td>.955</td>
<td>.003</td>
<td>.050</td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>.034</td>
<td>1</td>
<td>.034</td>
<td>.020</td>
<td>.889</td>
<td>.020</td>
<td>.052</td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjetiva</td>
<td>40.440</td>
<td>79</td>
<td>.512</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>53.611</td>
<td>79</td>
<td>.679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2Motivação</td>
<td>56.806</td>
<td>79</td>
<td>.719</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>178.215</td>
<td>79</td>
<td>2.256</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>134.658</td>
<td>79</td>
<td>1.705</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjetiva</td>
<td>1258.500</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>942.520</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2Motivação</td>
<td>1050.813</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>3940.000</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>2210.000</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjetiva</td>
<td>41.265</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>54.480</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>178.222</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>134.691</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a R Squared = .020 (Adjusted R Squared = .008)
^b R Squared = .016 (Adjusted R Squared = .003)
^c R Squared = .000 (Adjusted R Squared = .013)
^d R Squared = .000 (Adjusted R Squared = .013)
^e R Squared = .000 (Adjusted R Squared = .012)
^f Computed using alpha = .
<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Equipamento</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td>CIS2FadigaSubjectiva</td>
<td>NB</td>
<td>3,741</td>
<td>,133</td>
<td>3,477</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,952</td>
<td>,099</td>
<td>3,754</td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>NB</td>
<td>3,172</td>
<td>,153</td>
<td>2,868</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,388</td>
<td>,114</td>
<td>3,161</td>
</tr>
<tr>
<td>CIS2Motivação</td>
<td>NB</td>
<td>3,491</td>
<td>,157</td>
<td>3,178</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,510</td>
<td>,118</td>
<td>3,276</td>
</tr>
<tr>
<td>KSS2</td>
<td>NB</td>
<td>6,828</td>
<td>,279</td>
<td>6,272</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>6,808</td>
<td>,208</td>
<td>6,393</td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>NB</td>
<td>5,034</td>
<td>,242</td>
<td>4,552</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>5,077</td>
<td>,181</td>
<td>4,717</td>
</tr>
</tbody>
</table>
ANEXO K: MANOVA – Efeito do tipo de voo (NB;WB) nas medidas nas dimensões da escala Experiências de Recuperação

Tabela 51: Estatística descritiva

<table>
<thead>
<tr>
<th>Value Label</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipamento</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

Tabela 52: Teste M de Box

Box's Test of Equality of Covariance Matrices

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box's M</td>
<td>27,552</td>
</tr>
<tr>
<td>F</td>
<td>4,367</td>
</tr>
<tr>
<td>df1</td>
<td>6</td>
</tr>
<tr>
<td>df2</td>
<td>17982,727</td>
</tr>
<tr>
<td>Sig.</td>
<td>.000</td>
</tr>
</tbody>
</table>

Tabela 53: Testes Multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis</th>
<th>Error</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>df</td>
<td>df</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.976</td>
<td>1047,970b</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>3143,910</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>.024</td>
<td>1047,970b</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>3143,910</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>41,367</td>
<td>1047,970b</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>3143,910</td>
<td>1,000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>41,367</td>
<td>1047,970b</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>3143,910</td>
<td>1,000</td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.036</td>
<td>.935b</td>
<td>3,000</td>
<td>76,000</td>
<td>.428</td>
<td>2,806</td>
<td>.247</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>.964</td>
<td>.935b</td>
<td>3,000</td>
<td>76,000</td>
<td>.428</td>
<td>2,806</td>
<td>.247</td>
</tr>
<tr>
<td>Equipamento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>.037</td>
<td>.935b</td>
<td>3,000</td>
<td>76,000</td>
<td>.428</td>
<td>2,806</td>
<td>.247</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>.037</td>
<td>.935b</td>
<td>3,000</td>
<td>76,000</td>
<td>.428</td>
<td>2,806</td>
<td>.247</td>
</tr>
</tbody>
</table>
Tabela 54: Teste de Levene

Levene's Test of Equality of Error Variances

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlo Relaxamento</td>
<td>1,124</td>
<td>1</td>
<td>78</td>
<td>.292</td>
</tr>
<tr>
<td>Mestria</td>
<td>5.070</td>
<td>1</td>
<td>78</td>
<td>.027</td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td>0.008</td>
<td>1</td>
<td>78</td>
<td>.928</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Equipamento

Tabela 55: Testes de efeito no compósito multivariado

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td></td>
<td>.007(^a)</td>
<td>1</td>
<td>.007</td>
<td>.023</td>
<td>.881</td>
<td>.023</td>
<td>.053</td>
</tr>
<tr>
<td>Mestria</td>
<td></td>
<td>.633(^b)</td>
<td>1</td>
<td>.633</td>
<td>1.083</td>
<td>.301</td>
<td>1.083</td>
<td>.177</td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td></td>
<td>2.348(^c)</td>
<td>1</td>
<td>2.348</td>
<td>2.078</td>
<td>.153</td>
<td>2.078</td>
<td>.296</td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td></td>
<td>784.307</td>
<td>1</td>
<td>784.307</td>
<td>2523.47</td>
<td>.000</td>
<td>2523.472</td>
<td>1.000</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mestria</td>
<td>1017.013</td>
<td>1</td>
<td>1017.01</td>
<td>1740.36</td>
<td>.000</td>
<td>1740.366</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td></td>
<td>694.323</td>
<td>1</td>
<td>694.323</td>
<td>614.386</td>
<td>.000</td>
<td>614.386</td>
<td>1.000</td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td></td>
<td>.007</td>
<td>1</td>
<td>.007</td>
<td>.023</td>
<td>.881</td>
<td>.023</td>
<td>.053</td>
</tr>
<tr>
<td>Equipamento</td>
<td></td>
<td>.633</td>
<td>1</td>
<td>.633</td>
<td>1.083</td>
<td>.301</td>
<td>1.083</td>
<td>.177</td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td></td>
<td>2.348</td>
<td>1</td>
<td>2.348</td>
<td>2.078</td>
<td>.153</td>
<td>2.078</td>
<td>.296</td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td></td>
<td>24.243</td>
<td>78</td>
<td>311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mestria</td>
<td>45.581</td>
<td>78</td>
<td></td>
<td>.584</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td></td>
<td>88.148</td>
<td>78</td>
<td>1.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td></td>
<td>902.891</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mestria</td>
<td>1164.972</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td></td>
<td>837.750</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td></td>
<td>24.250</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mestria</td>
<td>46.214</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td></td>
<td>90.497</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\) R Squared = .000 (Adjusted R Squared = -.013)
\(b\) R Squared = .014 (Adjusted R Squared = .001)
\(c\) R Squared = .026 (Adjusted R Squared = .013)
\(d\) Computed using alpha =
<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Equipamento</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td>Controlo Relaxamento</td>
<td>NB</td>
<td>3,301</td>
<td>0,107</td>
<td>3,087 3,515</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,321</td>
<td>0,077</td>
<td>3,168 3,473</td>
</tr>
<tr>
<td>Mestria</td>
<td>NB</td>
<td>3,864</td>
<td>0,147</td>
<td>3,571 4,157</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>3,676</td>
<td>0,105</td>
<td>3,467 3,885</td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td>NB</td>
<td>3,296</td>
<td>0,205</td>
<td>2,889 3,704</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>2,934</td>
<td>0,146</td>
<td>2,643 3,225</td>
</tr>
</tbody>
</table>
ANEXO I: Teste t Para Médias de Amostras Independentes – comparação do tipo de voo com a duração do PSV

Tabela 57: Estatística descritiva

<table>
<thead>
<tr>
<th>Equipamento</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>29</td>
<td>8.02,55,86</td>
<td>1.37:9,010</td>
<td>0.18:04,277</td>
</tr>
<tr>
<td>MIAFSV</td>
<td>53</td>
<td>10.31,36,23</td>
<td>1.12:07,711</td>
<td>0.09:34,410</td>
</tr>
</tbody>
</table>

Tabela 58: Estatística descritiva

Independent Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Levene's Test for Equality of Variances</th>
<th>t-test for Equality of Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>Sig</td>
</tr>
<tr>
<td>MIAP assumed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variances not</td>
<td>-7,214</td>
<td>.000</td>
</tr>
<tr>
<td>assumed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

144
ANEXO M: MANOVA – Efeito das categorias da variável “1h antes do PSV” nas dimensões CIS Fadiga no MIA

Tabela 59: Estatística descritiva

<table>
<thead>
<tr>
<th></th>
<th>Value Label</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Noturno</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Circadiano</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Ambos</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Nenhum</td>
<td>29</td>
</tr>
</tbody>
</table>

lhAntesPSV

Tabela 60: Teste M de Box

<table>
<thead>
<tr>
<th></th>
<th>Box's M</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box's Test of Equality of</td>
<td>38,431</td>
<td>1,917</td>
<td>18</td>
<td>4093,140</td>
<td>0,011</td>
</tr>
<tr>
<td>Covariance Matrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 61: Testes Multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypotheses</th>
<th>Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.932</td>
<td>346,293³</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>1038,878</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.068</td>
<td>346,293³</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>1038,878</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>13,669</td>
<td>346,293³</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>1038,878</td>
<td>1,000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>13,669</td>
<td>346,293³</td>
<td>3,000</td>
<td>76,000</td>
<td>.000</td>
<td>1038,878</td>
<td>1,000</td>
</tr>
<tr>
<td>Momento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.198</td>
<td>1,841</td>
<td>9,000</td>
<td>234,000</td>
<td>.062</td>
<td>16,568</td>
<td>.810</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.809</td>
<td>1,869</td>
<td>9,000</td>
<td>185,115</td>
<td>.059</td>
<td>13,534</td>
<td>.702</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>.226</td>
<td>1,878</td>
<td>9,000</td>
<td>224,000</td>
<td>.056</td>
<td>16,904</td>
<td>.819</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>.172</td>
<td>4,468²</td>
<td>3,000</td>
<td>78,000</td>
<td>.006</td>
<td>13,405</td>
<td>.864</td>
</tr>
</tbody>
</table>

b. Exact statistic

° The statistic is an upper bound on F that yields a lower bound on the significance level.

d. Computed using alpha =
Tabela 62: Teste de Levene

Levene's Test of Equality of Error Variances

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS1FatigaSubjectiva</td>
<td>1,951</td>
<td>3</td>
<td>78</td>
<td>.128</td>
</tr>
<tr>
<td>CIS1Concentração</td>
<td>2,114</td>
<td>3</td>
<td>78</td>
<td>.105</td>
</tr>
<tr>
<td>CIS1Motivação</td>
<td>.834</td>
<td>3</td>
<td>78</td>
<td>.479</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a Design: Intercept + 1hAntesPSV

Tabela 63: Testes de efeito no compósito multivariado

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>CIS1FatigaSubjectiva</td>
<td>5,118</td>
<td>3</td>
<td>1,706</td>
<td>3,442</td>
<td>.021</td>
<td>10,325</td>
<td>.753</td>
</tr>
<tr>
<td></td>
<td>CIS1Concentração</td>
<td>4,185</td>
<td>3</td>
<td>1,395</td>
<td>2,892</td>
<td>.041</td>
<td>8,676</td>
<td>.669</td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>.370</td>
<td>3</td>
<td>.123</td>
<td>.251</td>
<td>.860</td>
<td>.753</td>
<td>.096</td>
</tr>
<tr>
<td>Intercept</td>
<td>CIS1FatigaSubjectiva</td>
<td>383,308</td>
<td>1</td>
<td>383,308</td>
<td>773,230</td>
<td>.000</td>
<td>773,230</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>CIS1Concentração</td>
<td>368,381</td>
<td>1</td>
<td>368,381</td>
<td>763,714</td>
<td>.000</td>
<td>763,714</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>357,384</td>
<td>1</td>
<td>357,384</td>
<td>728,563</td>
<td>.000</td>
<td>728,563</td>
<td>1,000</td>
</tr>
<tr>
<td>Momento 1hAntesPSV</td>
<td>CIS1FatigaSubjectiva</td>
<td>5,118</td>
<td>3</td>
<td>1,706</td>
<td>3,442</td>
<td>.021</td>
<td>10,325</td>
<td>.753</td>
</tr>
<tr>
<td></td>
<td>CIS1Concentração</td>
<td>4,185</td>
<td>3</td>
<td>1,395</td>
<td>2,892</td>
<td>.041</td>
<td>8,676</td>
<td>.669</td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>.370</td>
<td>3</td>
<td>.123</td>
<td>.251</td>
<td>.860</td>
<td>.753</td>
<td>.096</td>
</tr>
<tr>
<td>Error</td>
<td>CIS1FatigaSubjectiva</td>
<td>38,666</td>
<td>78</td>
<td></td>
<td>.496</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Concentração</td>
<td>37,624</td>
<td>78</td>
<td></td>
<td>.482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>38,262</td>
<td>78</td>
<td></td>
<td>.491</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CIS1FatigaSubjectiva</td>
<td>568,861</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>CIS1Concentração</td>
<td>521,840</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>524,000</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CIS1Concentração</td>
<td>43,785</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS1Motivação</td>
<td>41,809</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a R Squared = .117 (Adjusted R Squared = .081)

b R Squared = .100 (Adjusted R Squared = .065)

c R Squared = .010 (Adjusted R Squared = .029)

d Computed using alpha =
ANEXO N: Teste Post-hoc Scheffé – Categorias de “1h antes do PSV” e as dimensões CIS Fadiga no MIA

Tabela 64: Teste Post-hoc Scheffé

<table>
<thead>
<tr>
<th>Scheffé</th>
<th>(I) Momento</th>
<th>(I) Momento</th>
<th>Mean Difference (I-I)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1hAntesPSV</td>
<td>1hAntesPSV</td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Dependent Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>-0.9491*</td>
<td>0.31</td>
<td>-1.8362</td>
<td>-0.619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>-0.4664</td>
<td>0.385</td>
<td>-1.2255</td>
<td>-0.2927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>-0.6450</td>
<td>0.133</td>
<td>-1.1426</td>
<td>-1.1227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>0.9491*</td>
<td>0.031</td>
<td>0.0619</td>
<td>1.8362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>-0.4664</td>
<td>0.385</td>
<td>-1.2255</td>
<td>-0.2927</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>0.9491*</td>
<td>0.031</td>
<td>0.0619</td>
<td>1.8362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS1 Fadiga Subjetiva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>-0.4826</td>
<td>0.259</td>
<td>-1.1637</td>
<td>1.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>-0.1785</td>
<td>0.807</td>
<td>-0.6943</td>
<td>3.373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>0.6450</td>
<td>0.133</td>
<td>-1.1227</td>
<td>1.4126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS1 Concentração</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>-0.6146</td>
<td>0.086</td>
<td>-1.2864</td>
<td>0.0572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>-0.1897</td>
<td>0.763</td>
<td>-1.0492</td>
<td>0.1896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>0.4184</td>
<td>2.424</td>
<td>-1.0492</td>
<td>0.1896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>-0.6146</td>
<td>0.086</td>
<td>-1.2864</td>
<td>0.0572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>0.4184</td>
<td>2.424</td>
<td>-1.0492</td>
<td>0.1896</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS1 Motivação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>-0.0603</td>
<td>0.996</td>
<td>-0.6266</td>
<td>0.7473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>0.2031</td>
<td>0.898</td>
<td>-0.5520</td>
<td>0.9583</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>-0.0603</td>
<td>0.996</td>
<td>-0.6266</td>
<td>0.7473</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Based on observed means.

The error term is Mean Square(Error) = 0.491.

* The mean difference is significant at the
Tabela 65: Diferença de médias entre grupos

CIS1 Fadiga Subjetiva

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>9</td>
<td>1,9815</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>2,4479</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>2,6264</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>2,9306</td>
</tr>
</tbody>
</table>

Sig. 0,101 0,314

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 0,496.
a. Uses Harmonic Mean Sample Size = 15,374.
b. Alpha =

CIS1 Concentração

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>9</td>
<td>2,2000</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>2,2188</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>2,5379</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>2,8333</td>
</tr>
</tbody>
</table>

Sig. 0,103

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 0,482.
a. Uses Harmonic Mean Sample Size = 15,374.
b. Alpha =

CIS1 Motivação

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>9</td>
<td>2,2500</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>2,4397</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>2,4531</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>2,5000</td>
</tr>
</tbody>
</table>

Sig. 0,806

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 0,491.
a. Uses Harmonic Mean Sample Size = 15,374.
b. Alpha =
Tabela 66: Estatística descritiva

<table>
<thead>
<tr>
<th>IhAntesPSV</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>2,667</td>
<td>2,0000</td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>5,583</td>
<td>2,1088</td>
<td>12</td>
</tr>
<tr>
<td>Ambos</td>
<td>3,469</td>
<td>2,0788</td>
<td>32</td>
</tr>
<tr>
<td>Nenhum</td>
<td>4,034</td>
<td>1,9362</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>3,890</td>
<td>2,1488</td>
<td>82</td>
</tr>
<tr>
<td>Noturno</td>
<td>2,000</td>
<td>1,4142</td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>3,833</td>
<td>1,1146</td>
<td>12</td>
</tr>
<tr>
<td>SammPerelli Ambos</td>
<td>2,469</td>
<td>1,2948</td>
<td>32</td>
</tr>
<tr>
<td>Nenhum</td>
<td>2,759</td>
<td>.9876</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>2,720</td>
<td>1,2695</td>
<td>82</td>
</tr>
</tbody>
</table>

Tabela 67: Teste M de Box

Box’s Test of Equality of Covariance Matrices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box’s M</td>
<td>6,432</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>.667</td>
<td></td>
</tr>
<tr>
<td>df1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>df2</td>
<td>7195,832</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>.739</td>
<td></td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept + IhAntesPSV
Tabela 68: Testes multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothet. Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>813</td>
<td>167,329<sup>b</sup></td>
<td>2,000</td>
<td>77,000</td>
<td>.000</td>
<td>334,658</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>187</td>
<td>167,329<sup>b</sup></td>
<td>2,000</td>
<td>77,000</td>
<td>.000</td>
<td>334,658</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>4,346</td>
<td>167,329<sup>b</sup></td>
<td>2,000</td>
<td>77,000</td>
<td>.000</td>
<td>334,658</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>4,346</td>
<td>167,329<sup>b</sup></td>
<td>2,000</td>
<td>77,000</td>
<td>.000</td>
<td>334,658</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IhAntesPSV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.175</td>
<td>2,496</td>
<td>6,000</td>
<td>156,00</td>
<td>.025</td>
<td>14,976</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.825</td>
<td>2,587<sup>b</sup></td>
<td>6,000</td>
<td>154,00</td>
<td>.020</td>
<td>15,522</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>.211</td>
<td>2,675</td>
<td>6,000</td>
<td>152,00</td>
<td>.017</td>
<td>16,052</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>.209</td>
<td>5,425<sup>c</sup></td>
<td>3,000</td>
<td>78,000</td>
<td>.002</td>
<td>16,274</td>
</tr>
</tbody>
</table>

^b Exact statistic
^c The statistic is an upper bound on F that yields a lower bound on the significance level.
^d Computed using alpha =

Tabela 69: Teste de Levene

<table>
<thead>
<tr>
<th>Levene's Test of Equality of Error Variances<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>KSS1</td>
</tr>
<tr>
<td>SammPerellii</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
^a Design: Intercept + IhAntesPSV
<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent. Paramet er</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>KSS1</td>
<td>54,161a</td>
<td>3</td>
<td>18,054</td>
<td>4,403</td>
<td>.006</td>
<td>13,208</td>
<td>.858</td>
</tr>
<tr>
<td></td>
<td>SammPerell1</td>
<td>21,603b</td>
<td>3</td>
<td>7,201</td>
<td>5,156</td>
<td>.003</td>
<td>15,467</td>
<td>.911</td>
</tr>
<tr>
<td>Intercept</td>
<td>KSS1</td>
<td>953,828</td>
<td>1</td>
<td>953,828</td>
<td>232,604</td>
<td>.000</td>
<td>232,604</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>SammPerell1</td>
<td>470,215</td>
<td>1</td>
<td>470,215</td>
<td>336,652</td>
<td>.000</td>
<td>336,652</td>
<td>1,000</td>
</tr>
<tr>
<td>lnAntesPSV</td>
<td>KSS1</td>
<td>54,161</td>
<td>3</td>
<td>18,054</td>
<td>4,403</td>
<td>.006</td>
<td>13,208</td>
<td>.858</td>
</tr>
<tr>
<td></td>
<td>SammPerell1</td>
<td>21,603</td>
<td>3</td>
<td>7,201</td>
<td>5,156</td>
<td>.003</td>
<td>15,467</td>
<td>.911</td>
</tr>
<tr>
<td>Error</td>
<td>KSS1</td>
<td>319,851</td>
<td>78</td>
<td>4,101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerell1</td>
<td>108,946</td>
<td>78</td>
<td>1,397</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>KSS1</td>
<td>1615,000</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerell1</td>
<td>737,000</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>KSS1</td>
<td>374,012</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>SammPerell1</td>
<td>130,549</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .145 (Adjusted R Squared = .112)
b. R Squared = .165 (Adjusted R Squared = .133)
c. Computed using alpha = .05

151
Tabela 7.1: Teste Post-hoc Scheffé

<table>
<thead>
<tr>
<th>Variable</th>
<th>(I) Momento</th>
<th>(J) Momento</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1h Antes PSV</td>
<td>1h Antes PSV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Circadiano</td>
<td>-2.917*</td>
<td>.8929</td>
<td>.018</td>
<td>-5.468</td>
<td>.365</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>-0.802</td>
<td>.7641</td>
<td>.777</td>
<td>-2.985</td>
<td>1.381</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>-1.368</td>
<td>.7727</td>
<td>.378</td>
<td>-3.576</td>
<td>.840</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>2.917*</td>
<td>.8929</td>
<td>.018</td>
<td>.365</td>
<td>5.468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>2.115*</td>
<td>.6855</td>
<td>.029</td>
<td>.156</td>
<td>4.073</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>1.549</td>
<td>.6951</td>
<td>.184</td>
<td>-4.37</td>
<td>3.535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KSS1</td>
<td>Noturno</td>
<td>.802</td>
<td>.7641</td>
<td>.777</td>
<td>-1.831</td>
<td>2.985</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>-2.115*</td>
<td>.6855</td>
<td>.029</td>
<td>-4.073</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td>-0.566</td>
<td>.5192</td>
<td>.756</td>
<td>-2.049</td>
<td>.918</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>1.368</td>
<td>.7727</td>
<td>.378</td>
<td>-4.840</td>
<td>3.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>-1.549</td>
<td>.6951</td>
<td>.184</td>
<td>-3.535</td>
<td>.437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>0.566</td>
<td>.5192</td>
<td>.756</td>
<td>-9.18</td>
<td>2.049</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td>-1.833*</td>
<td>.5211</td>
<td>.009</td>
<td>-3.322</td>
<td>1.344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>-0.469</td>
<td>.4459</td>
<td>.776</td>
<td>-1.743</td>
<td>.805</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>-0.759</td>
<td>.4510</td>
<td>.424</td>
<td>-2.047</td>
<td>.530</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>1.833*</td>
<td>.5211</td>
<td>.009</td>
<td>.344</td>
<td>3.322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>1.365*</td>
<td>.4001</td>
<td>.012</td>
<td>.221</td>
<td>2.508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SammPerelli</td>
<td>Nenhum</td>
<td>1.075</td>
<td>.4057</td>
<td>.080</td>
<td>-0.84</td>
<td>2.234</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>.469</td>
<td>.4459</td>
<td>.776</td>
<td>-0.805</td>
<td>1.743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>-1.365*</td>
<td>.4001</td>
<td>.012</td>
<td>-2.508</td>
<td>2.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>-0.290</td>
<td>.3030</td>
<td>.822</td>
<td>-1.156</td>
<td>.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>.759</td>
<td>.4510</td>
<td>.424</td>
<td>-5.530</td>
<td>2.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>-1.075</td>
<td>.4057</td>
<td>.080</td>
<td>-2.234</td>
<td>.084</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>-0.290</td>
<td>.3030</td>
<td>.822</td>
<td>-5.576</td>
<td>1.156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on observed means.
The error term is Mean Square(Error) = 1.397.
* The mean difference is significant at the...
Tabla 72: Diferença de médias entre grupos

KSS1

<table>
<thead>
<tr>
<th>ihAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>2.667</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>3.469</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>4.034</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>5.583</td>
</tr>
<tr>
<td>Sig.</td>
<td>.327</td>
<td>.221</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 4.101.
a. Uses Harmonic Mean Sample Size = 15,374.
b. Alpha =

SammPerellii

<table>
<thead>
<tr>
<th>ihAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>2.000</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>2.469</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>2.759</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>3.833</td>
</tr>
<tr>
<td>Sig.</td>
<td>.373</td>
<td>.105</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square(Error) = 1.397.
a. Uses Harmonic Mean Sample Size = 15,374.
b. Alpha =
ANEXO P: MANOVA – Efeito das categorias da variável “1h antes do PSV” nas dimensões CIS Fadiga no MFA

<table>
<thead>
<tr>
<th>Tabela 73: Estatística descritiva</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1hAntesPSV</td>
</tr>
<tr>
<td>Noturno</td>
</tr>
<tr>
<td>Circadiano</td>
</tr>
<tr>
<td>CIS2FadigaSubjectiva</td>
</tr>
<tr>
<td>Ambos</td>
</tr>
<tr>
<td>Nenhum</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Noturno</td>
</tr>
<tr>
<td>Circadiano</td>
</tr>
<tr>
<td>CIS2Concentração</td>
</tr>
<tr>
<td>Ambos</td>
</tr>
<tr>
<td>Nenhum</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Noturno</td>
</tr>
<tr>
<td>Circadiano</td>
</tr>
<tr>
<td>CIS2Motivação</td>
</tr>
<tr>
<td>Ambos</td>
</tr>
<tr>
<td>Nenhum</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabela 74: Teste M de Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box’s Test of Equality of</td>
</tr>
<tr>
<td>Covariance Matrices</td>
</tr>
<tr>
<td>Box’s M</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>df1</td>
</tr>
<tr>
<td>df2</td>
</tr>
<tr>
<td>Sig.</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a Design: Intercept + 1hAntesPSV
Tabela 75: Testes multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observe d Powera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.962</td>
<td>625.663b</td>
<td>3,000</td>
<td>75,000</td>
<td>.000</td>
<td>1876,989</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.038</td>
<td>625.663b</td>
<td>3,000</td>
<td>75,000</td>
<td>.000</td>
<td>1876,989</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>25.027</td>
<td>625.663b</td>
<td>3,000</td>
<td>75,000</td>
<td>.000</td>
<td>1876,989</td>
<td>1,000</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>25.027</td>
<td>625.663b</td>
<td>3,000</td>
<td>75,000</td>
<td>.000</td>
<td>1876,989</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momento 1h Antes PSV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai's Trace</td>
<td>.125</td>
<td>1,112</td>
<td>9,000</td>
<td>231,000</td>
<td>.355</td>
<td>10,008</td>
<td>.546</td>
</tr>
<tr>
<td>Wilks' Lambda</td>
<td>.878</td>
<td>1,117</td>
<td>9,000</td>
<td>182,681</td>
<td>.352</td>
<td>8,117</td>
<td>.441</td>
</tr>
<tr>
<td>Hotelling's Trace</td>
<td>.137</td>
<td>1,119</td>
<td>9,000</td>
<td>221,000</td>
<td>.350</td>
<td>10,069</td>
<td>.548</td>
</tr>
<tr>
<td>Roy's Largest Root</td>
<td>.114</td>
<td>2,919c</td>
<td>3,000</td>
<td>77,000</td>
<td>.039</td>
<td>8,757</td>
<td>.673</td>
</tr>
</tbody>
</table>

b. Exact statistic
c. The statistic is an upper bound on F that yields a lower bound on the significance level.
d. Computed using alpha =

Tabela 76: Teste de Levene

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS2FadigaSubjectiva</td>
<td>1,326</td>
<td>3</td>
<td>77</td>
<td>.272</td>
</tr>
<tr>
<td>CIS2Concentração</td>
<td>.929</td>
<td>3</td>
<td>77</td>
<td>.431</td>
</tr>
<tr>
<td>CIS2Motivação</td>
<td>1.858</td>
<td>3</td>
<td>77</td>
<td>.144</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power^d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>CIS2FadigaSubjetiva</td>
<td>4,013</td>
<td>3</td>
<td>1,338</td>
<td>2,765</td>
<td>.048</td>
<td>8,296</td>
<td>.647</td>
</tr>
<tr>
<td></td>
<td>CIS2Concentração</td>
<td>2,346</td>
<td>3</td>
<td>.782</td>
<td>1,155</td>
<td>.333</td>
<td>3,464</td>
<td>.299</td>
</tr>
<tr>
<td></td>
<td>CIS2Motivação</td>
<td>3,205</td>
<td>3</td>
<td>1,068</td>
<td>1,535</td>
<td>.212</td>
<td>4,604</td>
<td>.390</td>
</tr>
<tr>
<td>Intercept</td>
<td>CIS2FadigaSubjetiva</td>
<td>927,789</td>
<td>1</td>
<td>927,789</td>
<td>1917,738</td>
<td>.000</td>
<td>1917,738</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>CIS2Concentração</td>
<td>665,888</td>
<td>1</td>
<td>665,888</td>
<td>983,486</td>
<td>.000</td>
<td>983,486</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>CIS2Motivação</td>
<td>764,424</td>
<td>1</td>
<td>764,424</td>
<td>1098,011</td>
<td>.000</td>
<td>1098,011</td>
<td>1,000</td>
</tr>
<tr>
<td>Momento 1h Antes PSV</td>
<td>CIS2FadigaSubjetiva</td>
<td>4,013</td>
<td>3</td>
<td>1,338</td>
<td>2,765</td>
<td>.048</td>
<td>8,296</td>
<td>.647</td>
</tr>
<tr>
<td></td>
<td>CIS2Concentração</td>
<td>2,346</td>
<td>3</td>
<td>.782</td>
<td>1,155</td>
<td>.333</td>
<td>3,464</td>
<td>.299</td>
</tr>
<tr>
<td></td>
<td>CIS2Motivação</td>
<td>3,205</td>
<td>3</td>
<td>1,068</td>
<td>1,535</td>
<td>.212</td>
<td>4,604</td>
<td>.390</td>
</tr>
<tr>
<td>Error</td>
<td>CIS2FadigaSubjetiva</td>
<td>37,252</td>
<td>77</td>
<td>.484</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS2Concentração</td>
<td>52,134</td>
<td>77</td>
<td>.677</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS2Motivação</td>
<td>53,607</td>
<td>77</td>
<td>.696</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS2FadigaSubjetiva</td>
<td>1258,500</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CIS2Concentração</td>
<td>942,520</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS2Motivação</td>
<td>1050,813</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS2FadigaSubjetiva</td>
<td>41,265</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>CIS2Concentração</td>
<td>54,480</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIS2Motivação</td>
<td>56,812</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .097 (Adjusted R Squared = .062)
b. R Squared = .043 (Adjusted R Squared = .006)
c. R Squared = .056 (Adjusted R Squared = .020)
d. Computed using alpha = .05

156
Tabela 78: Teste Post-hoc Scheffé

<table>
<thead>
<tr>
<th>Scheffé</th>
<th>(I) 1hAntesPSV</th>
<th>(J) 1hAntesPSV</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval Lower Bound</th>
<th>95% Confidence Interval Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cis2 Fatiga</td>
<td>Circadiano</td>
<td>,7963</td>
<td>,30671</td>
<td>,090</td>
<td>,0804</td>
<td>1,6730</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>,3017</td>
<td>,26336</td>
<td>,727</td>
<td>,4511</td>
<td>1,0545</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,5204</td>
<td>,26540</td>
<td>,287</td>
<td>,2382</td>
<td>1,2790</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,7963</td>
<td>,30671</td>
<td>,090</td>
<td>,1,6730</td>
<td>1,0545</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>,4946</td>
<td>,23648</td>
<td>,233</td>
<td>,1,1706</td>
<td>,1,813</td>
<td></td>
</tr>
<tr>
<td>Cis2 Motivação</td>
<td>Nenhum</td>
<td>,2759</td>
<td>,23874</td>
<td>,721</td>
<td>,9583</td>
<td>1,4065</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,3017</td>
<td>,26336</td>
<td>,727</td>
<td>,1,0545</td>
<td>,4511</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>,4946</td>
<td>,23648</td>
<td>,233</td>
<td>,1,1706</td>
<td>,1,813</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,2188</td>
<td>,17969</td>
<td>,687</td>
<td>,2949</td>
<td>1,7324</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,5204</td>
<td>,26540</td>
<td>,287</td>
<td>,1,2790</td>
<td>,2382</td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>,2759</td>
<td>,23874</td>
<td>,721</td>
<td>,4065</td>
<td>,9583</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>,2188</td>
<td>,17969</td>
<td>,687</td>
<td>,7324</td>
<td>1,2949</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,5677</td>
<td>,36284</td>
<td>,491</td>
<td>,4704</td>
<td>1,6038</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>,1075</td>
<td>,31156</td>
<td>,989</td>
<td>,7830</td>
<td>1,9981</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,2713</td>
<td>,31397</td>
<td>,862</td>
<td>,6262</td>
<td>1,1687</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,5677</td>
<td>,36284</td>
<td>,491</td>
<td>,1,6038</td>
<td>,4704</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>,4591</td>
<td>,27976</td>
<td>,446</td>
<td>,1,2588</td>
<td>,3405</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,2954</td>
<td>,28244</td>
<td>,779</td>
<td>,1,1027</td>
<td>,5119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,1075</td>
<td>,31156</td>
<td>,989</td>
<td>,9981</td>
<td>1,7380</td>
<td></td>
</tr>
<tr>
<td>Cis2 Concentração</td>
<td>Ambos</td>
<td>,4591</td>
<td>,27976</td>
<td>,446</td>
<td>,3405</td>
<td>1,2588</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td>,1637</td>
<td>,21257</td>
<td>,898</td>
<td>,4439</td>
<td>1,7713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,2713</td>
<td>,31397</td>
<td>,862</td>
<td>,1,1687</td>
<td>,6262</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Circadiano</td>
<td>,2954</td>
<td>,28244</td>
<td>,779</td>
<td>,5119</td>
<td>1,1027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>,1637</td>
<td>,21257</td>
<td>,898</td>
<td>,7713</td>
<td>1,4439</td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>,6875</td>
<td>,36793</td>
<td>,329</td>
<td>,3642</td>
<td>1,7392</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>,3118</td>
<td>,31593</td>
<td>,807</td>
<td>,5912</td>
<td>1,2149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,5374</td>
<td>,31837</td>
<td>,421</td>
<td>,3727</td>
<td>1,4474</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,6875</td>
<td>,36793</td>
<td>,329</td>
<td>,1,7392</td>
<td>,3642</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>,3757</td>
<td>,28368</td>
<td>,627</td>
<td>,1,1865</td>
<td>,4352</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,1301</td>
<td>,28640</td>
<td>,964</td>
<td>,9688</td>
<td>1,6685</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>,3118</td>
<td>,31593</td>
<td>,807</td>
<td>,1,2149</td>
<td>,5912</td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>,3757</td>
<td>,28368</td>
<td>,627</td>
<td>,4352</td>
<td>1,1865</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>,2255</td>
<td>,21556</td>
<td>,779</td>
<td>,3906</td>
<td>0,8417</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>,5374</td>
<td>,31837</td>
<td>,421</td>
<td>,1,4474</td>
<td>,3727</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>,1501</td>
<td>,28640</td>
<td>,964</td>
<td>,6685</td>
<td>0,9688</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>,2255</td>
<td>,21556</td>
<td>,779</td>
<td>,8417</td>
<td>0,3906</td>
<td></td>
</tr>
</tbody>
</table>

Based on observed means.

The error term is Mean Square(Error) = ,696.
Tabela 79: Diferença de médias entre grupos

CIS2FadigaSubjectiva

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>3,5000</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>3,7759</td>
</tr>
<tr>
<td>Ambos</td>
<td>31</td>
<td>3,9946</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>4,2963</td>
</tr>
</tbody>
</table>

Sig.

Means for groups in homogeneous subsets are displayed. Based on observed means.
The error term is Mean Square(Error) = .484.
a. Uses Harmonic Mean Sample Size = 15,315.
b. Alpha =

CIS2Concentração

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>2,9667</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>3,2621</td>
</tr>
<tr>
<td>Ambos</td>
<td>31</td>
<td>3,4258</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>3,5333</td>
</tr>
</tbody>
</table>

Sig.

Means for groups in homogeneous subsets are displayed. Based on observed means.
The error term is Mean Square(Error) = .677.
a. Uses Harmonic Mean Sample Size = 15,315.
b. Alpha =

CIS2Motivação

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>3,2292</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>3,3793</td>
</tr>
<tr>
<td>Ambos</td>
<td>31</td>
<td>3,6048</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>3,9167</td>
</tr>
</tbody>
</table>

Sig.

Means for groups in homogeneous subsets are displayed. Based on observed means.
The error term is Mean Square(Error) = .696.
a. Uses Harmonic Mean Sample Size = 15,315.
b. Alpha =
ANEXO Q: MANOVA – Efeito de “1h antes do PSV” nas medidas Fadiga Samn-Perelli e Sonolência KSS no MFA

Tabela 80: Estatística descritiva

<table>
<thead>
<tr>
<th>IhAntesPSV</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>7,222</td>
<td>1,3017</td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>6,667</td>
<td>2,0597</td>
<td>12</td>
</tr>
<tr>
<td>KSS2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>7,000</td>
<td>1,3663</td>
<td>31</td>
</tr>
<tr>
<td>Nenhum</td>
<td>6,552</td>
<td>1,4289</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>6,815</td>
<td>1,4926</td>
<td>81</td>
</tr>
<tr>
<td>Noturno</td>
<td>5,556</td>
<td>1,5270</td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>4,583</td>
<td>1,2401</td>
<td>12</td>
</tr>
<tr>
<td>SammPerelli2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>5,194</td>
<td>1,3765</td>
<td>31</td>
</tr>
<tr>
<td>Nenhum</td>
<td>4,966</td>
<td>1,3754</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>5,062</td>
<td>1,2976</td>
<td>81</td>
</tr>
</tbody>
</table>

Tabela 81: Teste M de Box

Box's Test of Equality of Covariance Matrices*

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box's M</td>
<td>17,008</td>
<td>1,764</td>
<td></td>
</tr>
<tr>
<td>df1</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>df2</td>
<td>7261,780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td>.070</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept + IhAntesPSV
Tabela 82: Testes multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypoth. df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>0.945</td>
<td>656,495<sup>b</sup></td>
<td>2,000</td>
<td>76,000</td>
<td>0.000</td>
<td>1312,990</td>
<td>1.000</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>0.055</td>
<td>656,495<sup>b</sup></td>
<td>2,000</td>
<td>76,000</td>
<td>0.000</td>
<td>1312,990</td>
<td>1.000</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>17,276</td>
<td>656,495<sup>b</sup></td>
<td>2,000</td>
<td>76,000</td>
<td>0.000</td>
<td>1312,990</td>
<td>1.000</td>
</tr>
<tr>
<td>Roy’s Largest Root</td>
<td>17,276</td>
<td>656,495<sup>b</sup></td>
<td>2,000</td>
<td>76,000</td>
<td>0.000</td>
<td>1312,990</td>
<td>1.000</td>
</tr>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>0.936</td>
<td>852<sup>b</sup></td>
<td>6,000</td>
<td>152,000</td>
<td>0.532</td>
<td>5,112</td>
<td>0.330</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>0.067</td>
<td>843</td>
<td>6,000</td>
<td>150,000</td>
<td>0.539</td>
<td>5,056</td>
<td>0.326</td>
</tr>
<tr>
<td>Roy’s Largest Root</td>
<td>0.046</td>
<td>1,188<sup>c</sup></td>
<td>3,000</td>
<td>77,000</td>
<td>0.320</td>
<td>3,563</td>
<td>0.307</td>
</tr>
</tbody>
</table>

b. Exact statistic
c. The statistic is an upper bound on F that yields a lower bound on the significance level
d. Computed using alpha =

Tabela 83: Teste de Levene

Levene’s Test of Equality of Error Variances^a

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSS2</td>
<td>0.818</td>
<td>3</td>
<td>77</td>
<td>.488</td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>0.996</td>
<td>3</td>
<td>77</td>
<td>.399</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + 1hAntesPSV

160
<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td>KSS2</td>
<td>4,828²</td>
<td>3</td>
<td>1,609</td>
<td>.715</td>
<td>.546</td>
<td>2,144</td>
<td>.195</td>
</tr>
<tr>
<td></td>
<td>SammPerelli2</td>
<td>5,748²</td>
<td>3</td>
<td>1,916</td>
<td>1,144</td>
<td>.337</td>
<td>3,433</td>
<td>.297</td>
</tr>
<tr>
<td>Intercept</td>
<td>KSS2</td>
<td>2882,962</td>
<td>1</td>
<td>2882,962</td>
<td>1280,248</td>
<td>.000</td>
<td>1280,248</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>SammPerelli2</td>
<td>1577,451</td>
<td>1</td>
<td>1577,451</td>
<td>941,995</td>
<td>.000</td>
<td>941,995</td>
<td>1,000</td>
</tr>
<tr>
<td>1hAntesPSV</td>
<td>KSS2</td>
<td>4,828</td>
<td>3</td>
<td>1,609</td>
<td>.715</td>
<td>.546</td>
<td>2,144</td>
<td>.195</td>
</tr>
<tr>
<td></td>
<td>SammPerelli2</td>
<td>5,748</td>
<td>3</td>
<td>1,916</td>
<td>1,144</td>
<td>.337</td>
<td>3,433</td>
<td>.297</td>
</tr>
<tr>
<td>Error</td>
<td>KSS2</td>
<td>173,395</td>
<td>77</td>
<td>2,252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerelli2</td>
<td>128,943</td>
<td>77</td>
<td>1,675</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>KSS2</td>
<td>3940,000</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerelli2</td>
<td>2210,000</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>KSS2</td>
<td>178,222</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SammPerelli2</td>
<td>134,691</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .027 (Adjusted R Squared = -.011)
b. R Squared = .043 (Adjusted R Squared = .003)
c. Computed using alpha =
Tabela 85: Teste Post-hoc Scheffé

<table>
<thead>
<tr>
<th>Scheffé</th>
<th>Dependent Variable</th>
<th>(I) IhAntesPSV</th>
<th>(J) IhAntesPSV</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>.556</td>
<td>.6617</td>
<td>.872</td>
<td>-1.336</td>
<td>2.447</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>.670</td>
<td>.5726</td>
<td>.713</td>
<td>-.966</td>
<td>2.307</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>-.556</td>
<td>.6617</td>
<td>.872</td>
<td>-2.447</td>
<td>1.336</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>-.333</td>
<td>.5102</td>
<td>.934</td>
<td>-1.792</td>
<td>1.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>.115</td>
<td>.5151</td>
<td>.997</td>
<td>-1.357</td>
<td>1.587</td>
<td></td>
</tr>
<tr>
<td>KSS2</td>
<td>Noturno</td>
<td>-.222</td>
<td>.5682</td>
<td>.985</td>
<td>-1.846</td>
<td>1.402</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>.333</td>
<td>.5102</td>
<td>.934</td>
<td>-1.125</td>
<td>1.792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>.448</td>
<td>.3877</td>
<td>.721</td>
<td>-.660</td>
<td>1.556</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>-.670</td>
<td>.5726</td>
<td>.713</td>
<td>-2.307</td>
<td>.966</td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>-.115</td>
<td>.5151</td>
<td>.997</td>
<td>-1.587</td>
<td>1.357</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>-.448</td>
<td>.3877</td>
<td>.721</td>
<td>-1.556</td>
<td>.660</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td>.972</td>
<td>.5706</td>
<td>.412</td>
<td>-.659</td>
<td>2.603</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>.362</td>
<td>.4900</td>
<td>.908</td>
<td>-1.039</td>
<td>1.763</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>.590</td>
<td>.4938</td>
<td>.700</td>
<td>-1.821</td>
<td>2.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>-.972</td>
<td>.5706</td>
<td>.412</td>
<td>-2.603</td>
<td>.659</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>-.610</td>
<td>.4400</td>
<td>.591</td>
<td>-1.868</td>
<td>.647</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>-.382</td>
<td>.4442</td>
<td>.863</td>
<td>-1.652</td>
<td>.887</td>
<td></td>
</tr>
<tr>
<td>SammPerelli2</td>
<td>Noturno</td>
<td>-.362</td>
<td>.4900</td>
<td>.908</td>
<td>-1.763</td>
<td>1.039</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>.610</td>
<td>.4400</td>
<td>.591</td>
<td>-.647</td>
<td>1.868</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>.228</td>
<td>.3343</td>
<td>.926</td>
<td>-.728</td>
<td>1.184</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td>-.590</td>
<td>.4938</td>
<td>.700</td>
<td>-2.001</td>
<td>.821</td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td>.382</td>
<td>.4442</td>
<td>.863</td>
<td>-.887</td>
<td>1.652</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td>-.228</td>
<td>.3343</td>
<td>.926</td>
<td>-1.184</td>
<td>.728</td>
<td></td>
</tr>
</tbody>
</table>

*Based on observed means.
The error term is Mean Square(Error) = 1.675.
Tabela 86: Diferença de médias entre grupos

KSS2

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>6,552</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>6,667</td>
</tr>
<tr>
<td>Ambos</td>
<td>31</td>
<td>7,000</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>7,222</td>
</tr>
<tr>
<td>Sig</td>
<td></td>
<td>.677</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 2,252.

a. Uses Harmonic Mean Sample Size = 15,315.
b. Alpha =

SammPerelli2

<table>
<thead>
<tr>
<th>1hAntesPSV</th>
<th>N</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>4,583</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>4,966</td>
</tr>
<tr>
<td>Ambos</td>
<td>31</td>
<td>5,194</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td>5,556</td>
</tr>
<tr>
<td>Sig</td>
<td></td>
<td>.237</td>
</tr>
</tbody>
</table>

Means for groups in homogeneous subsets are displayed. Based on observed means. The error term is Mean Square(Error) = 1,675.

a. Uses Harmonic Mean Sample Size = 15,315.
b. Alpha =

163
ANEXO R: Teste One-way Anova – Comparação de médias de “1h antes do PSV” e a duração do PSV

Tabela 87: Análise descritiva

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>95% Confidence Interval for Mean</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noturno</td>
<td>9</td>
<td>11:21:40</td>
<td>0:17:30</td>
<td>0:05:50</td>
<td>11:08:12</td>
<td>11:35:07</td>
<td>11:10:00</td>
<td>11:00:00</td>
<td>11:45:00</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>7:39:10</td>
<td>0:18:04</td>
<td>0:05:12</td>
<td>7:27:41</td>
<td>7:50:38</td>
<td>7:19:59</td>
<td>8:05:00</td>
<td>8:05:00</td>
</tr>
<tr>
<td>Ambos</td>
<td>32</td>
<td>10:03:07</td>
<td>1:12:06</td>
<td>0:12:44</td>
<td>9:37:07</td>
<td>10:29:07</td>
<td>8:15:00</td>
<td>11:25:00</td>
<td>11:25:00</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>9:30:10</td>
<td>2:12:55</td>
<td>0:24:40</td>
<td>8:39:36</td>
<td>10:20:43</td>
<td>4:25:00</td>
<td>12:00:00</td>
<td>12:00:00</td>
</tr>
<tr>
<td>Total</td>
<td>82</td>
<td>9:39:01</td>
<td>1:48:17</td>
<td>0:11:57</td>
<td>9:15:13</td>
<td>10:02:49</td>
<td>4:25:00</td>
<td>12:00:00</td>
<td>12:00:00</td>
</tr>
</tbody>
</table>

Tabela 88: Teste One-way Anova

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>1037047127,839</td>
<td>3</td>
<td>345682375,946</td>
<td>11,316</td>
<td>.000</td>
</tr>
<tr>
<td>Within Groups</td>
<td>2382851896,552</td>
<td>78</td>
<td>30549383,289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3419899024,390</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependent Variable: M1APSV</td>
<td></td>
<td>Mean</td>
<td>Std. Error</td>
<td>Sig.</td>
<td>95% Confidence Interval</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>------</td>
<td>------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>(I) 1hAntesPSV</td>
<td>(J) 1hAntesPSV</td>
<td>Difference (I-J)</td>
<td>Lower Bound</td>
<td>Upper Bound</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Noturno</td>
<td>Ambos</td>
<td>3:42:30,000* 0:40:37,244</td>
<td>-0:20:46,65</td>
<td>2:57:51,65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nenhum</td>
<td>-3:42:30,000 0:40:37,244</td>
<td>0:11:03,22 2:53:51,65</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>Nenhum (I)</td>
<td>-2:23:57,50 0:31:10,949</td>
<td>-0:54:51,25</td>
<td></td>
</tr>
<tr>
<td>Scheffe</td>
<td>Noturno</td>
<td>Ambos</td>
<td>-1:18:32,50 0:34:45,436</td>
<td>-0:20:39,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nenhum</td>
<td>0:32:57,155 0:23:37,073</td>
<td>3:53:03,75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>-1:51:00,34 0:31:17,158</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>Nenhum (J)</td>
<td>2:23:57,50* 0:31:10,949</td>
<td>3:53:03,75</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>-1:51:00,34 0:31:17,158</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>1:40:26,45 0:34:32,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nenhum</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:00,34* 0:31:17,158</td>
<td>0:20:39,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>-2:23:57,50 0:31:10,949</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:29,655 0:35:08,981</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>Nenhum</td>
<td>3:42:30,000* 0:40:37,244</td>
<td>2:53:57,30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nenhum (J)</td>
<td>3:42:30,000 0:40:37,244</td>
<td>2:53:57,30</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:29,655 0:35:08,981</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>Nenhum (J)</td>
<td>-2:23:57,50* 0:31:10,949</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nenhum (J)</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:00,34* 0:31:17,158</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ambos (J)</td>
<td>2:23:57,50* 0:31:10,949</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>1:18:32,50 0:34:45,436</td>
<td>2:53:57,30</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>Nenhum</td>
<td>-1:51:00,34 0:31:17,158</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>2:23:57,50* 0:31:10,949</td>
<td>2:53:57,30</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:29,655 0:35:08,981</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>Nenhum</td>
<td>-2:23:57,50* 0:31:10,949</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nenhum</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:00,34* 0:31:17,158</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ambos (J)</td>
<td>2:23:57,50* 0:31:10,949</td>
<td>2:53:57,30</td>
<td></td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noturno (J)</td>
<td>1:51:29,655 0:35:08,981</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td>Ambos</td>
<td>Circadiano</td>
<td>Nenhum</td>
<td>-2:23:57,50* 0:31:10,949</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nenhum</td>
<td>0:32:57,155 0:23:37,073</td>
<td>-0:34:32,14</td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td>Nenhum</td>
<td>1:51:00,34* 0:31:17,158</td>
<td>5:02:46,65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ambos (J)</td>
<td>2:23:57,50* 0:31:10,949</td>
<td>2:53:57,30</td>
<td></td>
</tr>
</tbody>
</table>

* The mean difference is significant at the 0.05 level.
Tabela 90: Diferença de médias entre grupos

<table>
<thead>
<tr>
<th>1hAntes?SV</th>
<th>N</th>
<th>Subset for alpha = 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Circadiano</td>
<td>12</td>
<td>7:39:10,00</td>
</tr>
<tr>
<td>Nenhum</td>
<td>29</td>
<td>9:30:10,34</td>
</tr>
<tr>
<td>Scheffea,b Ambos</td>
<td>32</td>
<td>10:03:07,50</td>
</tr>
<tr>
<td>Noturno</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>1,000</td>
</tr>
</tbody>
</table>

a Means for groups in homogeneous subsets are displayed.
b Uses Harmonic Mean Sample Size = 15,374.

The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.
ANEXO S: MANOVA – Efeito de “1h antes do PSV” nas dimensões da escala Experiências de Recuperação

Tabela 91: Estatística descritiva

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IhAntesPSV</td>
<td>Mean</td>
<td>Std. Deviation</td>
<td>N</td>
</tr>
<tr>
<td>Noturno</td>
<td>3,4861</td>
<td>.48591</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>3,2875</td>
<td>.50017</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Controle_Relaxamento</td>
<td>Ambos</td>
<td>3,3320</td>
<td>.62266</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>3,2500</td>
<td>.52398</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3,3141</td>
<td>.55404</td>
<td>80</td>
</tr>
<tr>
<td>Noturno</td>
<td>3,6481</td>
<td>1,18862</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>3,8500</td>
<td>.69589</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Mestria</td>
<td>Ambos</td>
<td>3,7188</td>
<td>.82679</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>3,7529</td>
<td>.57151</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3,7396</td>
<td>.76484</td>
<td>80</td>
</tr>
<tr>
<td>Noturno</td>
<td>2,6667</td>
<td>.90139</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Circadiano</td>
<td>3,3500</td>
<td>1,17969</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Distanciamento_Psicologico</td>
<td>Ambos</td>
<td>3,0625</td>
<td>1,02194</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td>3,0690</td>
<td>1,14739</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>3,0563</td>
<td>1,07029</td>
<td>80</td>
</tr>
</tbody>
</table>

Tabela 92: Teste M de Box

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Box's Test of Equality of Covariance Matricesa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box's M</td>
<td>39,834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1,969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>df1</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>df2</td>
<td>3513,122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig</td>
<td>.009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.
a. Design: Intercept + IhAntesPSV

167
Tabela 93: Testes multivariados

<table>
<thead>
<tr>
<th>Effect</th>
<th>Value</th>
<th>F</th>
<th>Hypothesis df</th>
<th>Error df</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>.971</td>
<td>826,362b</td>
<td>3,000</td>
<td>74,000</td>
<td>.000</td>
<td>2479,087</td>
<td>1,000</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>.029</td>
<td>826,362b</td>
<td>3,000</td>
<td>74,000</td>
<td>.000</td>
<td>2479,087</td>
<td>1,000</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>33,501</td>
<td>826,362b</td>
<td>3,000</td>
<td>74,000</td>
<td>.000</td>
<td>2479,087</td>
<td>1,000</td>
</tr>
<tr>
<td>Rey’s Largest Root</td>
<td>33,501</td>
<td>826,362b</td>
<td>3,000</td>
<td>74,000</td>
<td>.000</td>
<td>2479,087</td>
<td>1,000</td>
</tr>
<tr>
<td>Pillai’s Trace</td>
<td>.053</td>
<td>.455</td>
<td>9,000</td>
<td>228,000</td>
<td>.903</td>
<td>4,098</td>
<td>.223</td>
</tr>
<tr>
<td>Wilks’ Lambda</td>
<td>.947</td>
<td>.451</td>
<td>9,000</td>
<td>180,247</td>
<td>.906</td>
<td>3,283</td>
<td>.180</td>
</tr>
<tr>
<td>Hotelling’s Trace</td>
<td>.055</td>
<td>.447</td>
<td>9,000</td>
<td>218,000</td>
<td>.908</td>
<td>4,023</td>
<td>.218</td>
</tr>
<tr>
<td>Rey’s Largest Root</td>
<td>.050</td>
<td>1,266c</td>
<td>3,000</td>
<td>76,000</td>
<td>.292</td>
<td>3,798</td>
<td>.326</td>
</tr>
</tbody>
</table>

b. Exact statistic
c. The statistic is an upper bound on F that yields a lower bound on the significance level.
d. Computed using alpha = .05

Tabela 93: Teste de Levene

Levene’s Test of Equality of Error Variances

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controle Relaxamento</td>
<td>.643</td>
<td>3</td>
<td>76</td>
<td>.590</td>
</tr>
<tr>
<td>Mestria</td>
<td>2.230</td>
<td>3</td>
<td>76</td>
<td>.091</td>
</tr>
<tr>
<td>Distanciamento Psicológico</td>
<td>.503</td>
<td>3</td>
<td>76</td>
<td>.681</td>
</tr>
</tbody>
</table>

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
a. Design: Intercept + ihAntesPSV

168
Tabela 94: Teste de efeito no compósito multivariado

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent Variable</th>
<th>Type III Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
<th>Noncent. Parameter</th>
<th>Observed Powerd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrected Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mestria</td>
<td>Distanciamento_Psicológico</td>
<td>2,235c</td>
<td>3</td>
<td>.745</td>
<td>.641</td>
<td>.591</td>
<td>1,924</td>
<td>.179</td>
</tr>
<tr>
<td></td>
<td>Controlo_Relaxamento</td>
<td>644,310</td>
<td>1</td>
<td>644,310</td>
<td>2053,405</td>
<td>.000</td>
<td>2053,405</td>
<td>1,000</td>
</tr>
<tr>
<td>Intercept</td>
<td>Mestria</td>
<td>809,460</td>
<td>1</td>
<td>809,460</td>
<td>1337,445</td>
<td>.000</td>
<td>1337,445</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>Distanciamento_Psicológico</td>
<td>533,070</td>
<td>1</td>
<td>533,070</td>
<td>459,012</td>
<td>.000</td>
<td>459,012</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>Controlo_Relaxamento</td>
<td>.403</td>
<td>3</td>
<td>.134</td>
<td>.428</td>
<td>.734</td>
<td>1,284</td>
<td>.132</td>
</tr>
<tr>
<td>1hAntesPSV</td>
<td>Mestria</td>
<td>.216</td>
<td>3</td>
<td>.072</td>
<td>.119</td>
<td>.949</td>
<td>.357</td>
<td>.071</td>
</tr>
<tr>
<td></td>
<td>Distanciamento_Psicológico</td>
<td>2,235c</td>
<td>3</td>
<td>.745</td>
<td>.641</td>
<td>.591</td>
<td>1,924</td>
<td>.179</td>
</tr>
<tr>
<td></td>
<td>Controlo_Relaxamento</td>
<td>23,847</td>
<td>76</td>
<td>.314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>Mestria</td>
<td>45,997</td>
<td>76</td>
<td>.605</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distanciamento_Psicológico</td>
<td>88,262</td>
<td>76</td>
<td>1,161</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controlo_Relaxamento</td>
<td>902,891</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Mestria</td>
<td>1164,972</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distanciamento_Psicológico</td>
<td>837,750</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td>Controlo_Relaxamento</td>
<td>24,250</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Distanciamento_Psicológico</td>
<td>90,497</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. R Squared = .017 (Adjusted R Squared = -.022)
b. R Squared = .005 (Adjusted R Squared = -.035)
c. R Squared = .022 (Adjusted R Squared = -.014)
d. Computed using alpha = .05

169
<table>
<thead>
<tr>
<th>Scheffé</th>
<th>(I) 1hAntesPSV</th>
<th>(J) 1hAntesPSV</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Circadiano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noturno</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td></td>
<td></td>
<td>0.986</td>
<td></td>
<td>-1.6573 1.6345</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>0.2361</td>
<td></td>
<td>-1.3750 1.8527</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>-1.986</td>
<td></td>
<td>-3.9345 0.9697</td>
</tr>
<tr>
<td>Circadiano</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td></td>
<td></td>
<td>-0.445</td>
<td></td>
<td>-1.6248 0.7357</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>0.0375</td>
<td></td>
<td>-0.5498 0.6248</td>
</tr>
<tr>
<td>Relaxonamento</td>
<td></td>
<td></td>
<td></td>
<td>-1.541</td>
<td></td>
<td>-2.7584 0.4502</td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td></td>
<td></td>
<td>0.0445</td>
<td></td>
<td>-0.5337 0.6248</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>0.0820</td>
<td></td>
<td>-0.3286 0.4927</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>-0.2361</td>
<td></td>
<td>-0.8472 0.3750</td>
</tr>
<tr>
<td>Nenhum</td>
<td>Circadiano</td>
<td></td>
<td></td>
<td>-0.375</td>
<td></td>
<td>-0.6248 0.5498</td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td></td>
<td></td>
<td>-0.0820</td>
<td></td>
<td>-0.4927 0.3286</td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td></td>
<td></td>
<td>-0.2019</td>
<td></td>
<td>-1.2239 0.8202</td>
</tr>
<tr>
<td>Noturno</td>
<td>Ambos</td>
<td></td>
<td></td>
<td>-0.0706</td>
<td></td>
<td>-0.9009 0.7687</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>-0.1047</td>
<td></td>
<td>-0.9535 0.7440</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>0.2019</td>
<td></td>
<td>-0.8202 1.2239</td>
</tr>
<tr>
<td>Circadiano</td>
<td>Ambos</td>
<td></td>
<td></td>
<td>0.1313</td>
<td></td>
<td>-0.9371 0.7646</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>0.0971</td>
<td></td>
<td>-0.7186 0.9128</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>0.0706</td>
<td></td>
<td>-0.7687 0.9099</td>
</tr>
<tr>
<td>Mestria</td>
<td>Ambos</td>
<td></td>
<td></td>
<td>-1.313</td>
<td></td>
<td>-0.9371 0.6746</td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td></td>
<td></td>
<td>-0.0341</td>
<td></td>
<td>-0.6044 0.5362</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>-0.1047</td>
<td></td>
<td>-0.7440 0.9535</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>0.0341</td>
<td></td>
<td>-0.5362 0.6044</td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td></td>
<td></td>
<td>-0.6833</td>
<td></td>
<td>-2.0990 0.7324</td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td></td>
<td></td>
<td>-0.3958</td>
<td></td>
<td>-1.5584 0.7667</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>-0.4023</td>
<td></td>
<td>-1.5780 0.7734</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>0.6833</td>
<td></td>
<td>-0.7324 2.0990</td>
</tr>
<tr>
<td>Distanciamento</td>
<td>Ambos</td>
<td></td>
<td></td>
<td>0.2875</td>
<td></td>
<td>-0.8288 1.4038</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>0.2810</td>
<td></td>
<td>-0.8489 1.1410</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>0.3958</td>
<td></td>
<td>-0.7667 1.5584</td>
</tr>
<tr>
<td>Psicológico</td>
<td>Ambos</td>
<td></td>
<td></td>
<td>-0.2875</td>
<td></td>
<td>-1.4038 0.8288</td>
</tr>
<tr>
<td></td>
<td>Circadiano</td>
<td></td>
<td></td>
<td>-0.0065</td>
<td></td>
<td>-0.7964 0.7835</td>
</tr>
<tr>
<td></td>
<td>Nenhum</td>
<td></td>
<td></td>
<td>0.4023</td>
<td></td>
<td>-0.7734 1.5780</td>
</tr>
<tr>
<td></td>
<td>Noturno</td>
<td></td>
<td></td>
<td>0.2810</td>
<td></td>
<td>-1.4110 0.8489</td>
</tr>
<tr>
<td></td>
<td>Ambos</td>
<td></td>
<td></td>
<td>0.0065</td>
<td></td>
<td>-0.7835 0.7964</td>
</tr>
</tbody>
</table>

Notes:
- Based on observed means.
- The error term is $\text{Mean Square(Error)} = 1.161$.

170
ANEXO T: MRLM – Preditores da medida Fadiga Samm-Perelli no MFA

Tabela 96: Estatística descritiva

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SammPerelli2</td>
<td>5,063</td>
<td>1,3140</td>
<td>79</td>
</tr>
<tr>
<td>Momento1hAntesPSV</td>
<td>3,01</td>
<td>.980</td>
<td>79</td>
</tr>
<tr>
<td>Controlo_Relaxamento</td>
<td>3,3149</td>
<td>.55753</td>
<td>79</td>
</tr>
<tr>
<td>Mestria</td>
<td>3,7511</td>
<td>.76277</td>
<td>79</td>
</tr>
<tr>
<td>Distanciamento_Psicolóxico</td>
<td>3,0443</td>
<td>1,07175</td>
<td>79</td>
</tr>
<tr>
<td>KSSI</td>
<td>3,810</td>
<td>2,1066</td>
<td>79</td>
</tr>
<tr>
<td>SammPerelli1</td>
<td>2,684</td>
<td>1,2562</td>
<td>79</td>
</tr>
</tbody>
</table>

Tabela 97: Coeficiente de correlação Pearson

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) SammPerelli2</td>
<td>1,000</td>
<td>-0,60</td>
<td>.249</td>
<td>-0,036</td>
<td>-0,093</td>
<td>.079</td>
<td>.199</td>
<td>.276</td>
</tr>
<tr>
<td>(2) Momento1hAntesPSV</td>
<td>-0,60</td>
<td>1,000</td>
<td>-0,113</td>
<td>-0,110</td>
<td>.016</td>
<td>.054</td>
<td>.082</td>
<td>.045</td>
</tr>
<tr>
<td>(3) M1APSVM</td>
<td>.249</td>
<td>-0,113</td>
<td>1,000</td>
<td>-0,002</td>
<td>-0,139</td>
<td>-0,198</td>
<td>-0,110</td>
<td>-0,170</td>
</tr>
<tr>
<td>(4) Controlo_Relaxamento</td>
<td>-0,036</td>
<td>-0,110</td>
<td>-0,002</td>
<td>1,000</td>
<td>.371</td>
<td>.173</td>
<td>-0,078</td>
<td>-0,108</td>
</tr>
<tr>
<td>(5) Mestria</td>
<td>-0,093</td>
<td>.016</td>
<td>-0,139</td>
<td>.371</td>
<td>1,000</td>
<td>.353</td>
<td>.131</td>
<td>.091</td>
</tr>
<tr>
<td>(6) Distanciamento_Psicologico</td>
<td>-0,079</td>
<td>.054</td>
<td>-0,198</td>
<td>.173</td>
<td>.353</td>
<td>1,000</td>
<td>.282</td>
<td>.230</td>
</tr>
<tr>
<td>(7) KSSI</td>
<td>.199</td>
<td>.082</td>
<td>-0,110</td>
<td>-0,078</td>
<td>.131</td>
<td>.282</td>
<td>1,000</td>
<td>.805</td>
</tr>
<tr>
<td>(8) SammPerelli1</td>
<td>.276</td>
<td>.045</td>
<td>-0,170</td>
<td>-0,108</td>
<td>.091</td>
<td>.230</td>
<td>.805</td>
<td>1,000</td>
</tr>
</tbody>
</table>
Tabela 98: Modelo de regressão

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.276a</td>
<td>.076</td>
<td>.064</td>
<td>1.2710</td>
</tr>
<tr>
<td>2</td>
<td>.408b</td>
<td>.167</td>
<td>.145</td>
<td>1.2151</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), SammPerelli1
b. Predictors: (Constant), SammPerelli1, M1APSV

tabela 99: Teste Anova

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>10,286</td>
<td>1</td>
<td>10,286</td>
<td>6.367</td>
<td>.014b</td>
</tr>
<tr>
<td>1</td>
<td>124,397</td>
<td>77</td>
<td>1,616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>134,684</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>22,474</td>
<td>2</td>
<td>11,237</td>
<td>7.611</td>
<td>.001c</td>
</tr>
<tr>
<td>2</td>
<td>112,209</td>
<td>76</td>
<td>1,476</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>134,684</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: SammPerelli2
b. Predictors: (Constant), SammPerelli1
c. Predictors: (Constant), SammPerelli1, M1APSV

Tabela 100: Coeficientes

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td>4,288</td>
<td>.339</td>
<td>12,645</td>
<td>.000</td>
</tr>
<tr>
<td>1</td>
<td>SammPerelli1</td>
<td>.289</td>
<td>.115</td>
<td>.276</td>
<td>2,523</td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td>1,985</td>
<td>.865</td>
<td>2,296</td>
<td>.024</td>
</tr>
<tr>
<td>2</td>
<td>SammPerelli1</td>
<td>.343</td>
<td>.111</td>
<td>.328</td>
<td>3,089</td>
</tr>
<tr>
<td></td>
<td>M1APSV</td>
<td>6,185E-005</td>
<td>.000</td>
<td>.305</td>
<td>2,873</td>
</tr>
</tbody>
</table>

a. Dependent Variable: SammPerelli2
Tabela 101: Variáveis excluídas do modelo MRLM

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Tolerance</th>
<th>VIF</th>
<th>Minimum Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momento1hAntesPSV</td>
<td>-.073b</td>
<td>-.662</td>
<td>.510</td>
<td>-.076</td>
<td>.998</td>
<td>1.002</td>
<td>.998</td>
</tr>
<tr>
<td>M1APS V</td>
<td>.305b</td>
<td>2.873</td>
<td>.005</td>
<td>.313</td>
<td>.971</td>
<td>1.030</td>
<td>.971</td>
</tr>
<tr>
<td>Controle_Relaxamento</td>
<td>-.007b</td>
<td>-.060</td>
<td>.952</td>
<td>-.007</td>
<td>.988</td>
<td>1.012</td>
<td>.988</td>
</tr>
<tr>
<td>Mestria</td>
<td>-.119b</td>
<td>-1.082</td>
<td>.283</td>
<td>-.123</td>
<td>.992</td>
<td>1.008</td>
<td>.992</td>
</tr>
<tr>
<td>Distanciamento_Psicologico</td>
<td>-.151b</td>
<td>-1.347</td>
<td>.182</td>
<td>-.153</td>
<td>.947</td>
<td>1.056</td>
<td>.947</td>
</tr>
<tr>
<td>KSS1</td>
<td>-.067b</td>
<td>-1.363</td>
<td>.718</td>
<td>-.042</td>
<td>.351</td>
<td>2.847</td>
<td>.351</td>
</tr>
<tr>
<td>Momento1hAntesPSV</td>
<td>-.041c</td>
<td>-1.389</td>
<td>.698</td>
<td>-.045</td>
<td>.987</td>
<td>1.014</td>
<td>.960</td>
</tr>
<tr>
<td>Controle_Relaxamento</td>
<td>.000c</td>
<td>-.003</td>
<td>.998</td>
<td>.000</td>
<td>.988</td>
<td>1.012</td>
<td>.959</td>
</tr>
<tr>
<td>Mestria</td>
<td>-.082c</td>
<td>-1.773</td>
<td>.442</td>
<td>-.089</td>
<td>.976</td>
<td>1.024</td>
<td>.956</td>
</tr>
<tr>
<td>Distanciamento_Psicologico</td>
<td>-.102c</td>
<td>-1.937</td>
<td>.352</td>
<td>-.108</td>
<td>.921</td>
<td>1.085</td>
<td>.921</td>
</tr>
<tr>
<td>KSS1</td>
<td>-.091c</td>
<td>-1.511</td>
<td>.611</td>
<td>-.059</td>
<td>.351</td>
<td>2.853</td>
<td>.345</td>
</tr>
</tbody>
</table>

b. Predictors in the Model: (Constant), SammPerelli1

c. Predictors in the Model: (Constant), SammPerelli1, M1APS V

Tabela 102: Diagnóstico de colinearidade

Collinearity Diagnostics

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimension</th>
<th>Eigenvalue</th>
<th>Condition Index</th>
<th>Variance Proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Constant)</td>
<td>SammPerelli1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1,907</td>
<td>1,000</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.093</td>
<td>4,521</td>
<td>.95</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2,846</td>
<td>1,000</td>
<td>.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>.139</td>
<td>4,524</td>
<td>.02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.014</td>
<td>14.059</td>
<td>.98</td>
</tr>
</tbody>
</table>

a. Dependent Variable: SammPerelli2
ANEXO U: MRLM – Preditores da medida Fadiga Samn-Perelli no MIA

Tabela 103: Estatística descritiva

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SamnPerelli1</td>
<td>2,675</td>
<td>1,2506</td>
<td>80</td>
</tr>
<tr>
<td>Momento1h_AantesPSV</td>
<td>3,01</td>
<td>1,974</td>
<td>80</td>
</tr>
<tr>
<td>MI_APSV</td>
<td>9:42:18,75</td>
<td>1:47:35,132</td>
<td>80</td>
</tr>
<tr>
<td>Controlo_Relaxamento</td>
<td>3,314</td>
<td>5,5404</td>
<td>80</td>
</tr>
<tr>
<td>Mestria</td>
<td>3,7396</td>
<td>1,76484</td>
<td>80</td>
</tr>
<tr>
<td>Distanciamento_Psicologico</td>
<td>3,0563</td>
<td>1,07029</td>
<td>80</td>
</tr>
</tbody>
</table>

Tabela 104: Coeficiente correlação de Pearson

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) SamnPerelli1</td>
<td>1,000</td>
<td>.045</td>
<td>-.170</td>
<td>-.107</td>
<td>.098</td>
<td>.222</td>
</tr>
<tr>
<td>(2) 1h_AantesPSV</td>
<td>.045</td>
<td>1,000</td>
<td>-.113</td>
<td>-.110</td>
<td>.016</td>
<td>.054</td>
</tr>
<tr>
<td>(3) MI_APSV</td>
<td>-.170</td>
<td>-.113</td>
<td>1,000</td>
<td>-.002</td>
<td>-.138</td>
<td>-.197</td>
</tr>
<tr>
<td>(4) Controlo_Relaxamento</td>
<td>-.107</td>
<td>-.110</td>
<td>-.002</td>
<td>1,000</td>
<td>.370</td>
<td>.171</td>
</tr>
<tr>
<td>(5) Mestria</td>
<td>.098</td>
<td>.016</td>
<td>-.138</td>
<td>.370</td>
<td>1,000</td>
<td>.335</td>
</tr>
<tr>
<td>(6) Distanciamento_Psicologico</td>
<td>.222</td>
<td>.054</td>
<td>-.197</td>
<td>.171</td>
<td>.335</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tabela 105: Modelo de regressão

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.222a</td>
<td>.049</td>
<td>.037</td>
<td>1,2272</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Distanciamento_Psicologico

174
Tabela 106: Teste Anova

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>6,083</td>
<td>1</td>
<td>6,083</td>
<td>4,039</td>
<td>0,048</td>
</tr>
<tr>
<td>1 Residual</td>
<td>117,467</td>
<td>78</td>
<td>1,506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>123,550</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: SammPerelli
b. Predictors: (Constant), Distanciamento_Psicológico

Tabela 107: Coeficientes

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>(Constant)</td>
<td>1,883</td>
<td>.417</td>
<td>.129</td>
<td>4,510</td>
<td>.000</td>
</tr>
<tr>
<td>1</td>
<td>.259</td>
<td>.129</td>
<td>.222</td>
<td>2,010</td>
<td>.048</td>
</tr>
</tbody>
</table>

a. Dependent Variable: SammPerelli

Tabela 108: Variáveis excluídas do modelo MRLM

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tolerance</td>
<td>VIF</td>
</tr>
<tr>
<td>lhAntesPSV</td>
<td>.033</td>
<td>.297</td>
<td>.767</td>
<td>.034</td>
<td>.997</td>
</tr>
<tr>
<td>MIAPSV</td>
<td>-.131</td>
<td>-1,168</td>
<td>.246</td>
<td>-.132</td>
<td>.961</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Tolerance</td>
<td>VIF</td>
</tr>
<tr>
<td>Controlo_Relaxamento</td>
<td>-.149</td>
<td>-1,336</td>
<td>.185</td>
<td>-.151</td>
<td>.971</td>
</tr>
<tr>
<td>Mestria</td>
<td>.026</td>
<td>.225</td>
<td>.823</td>
<td>.026</td>
<td>.888</td>
</tr>
</tbody>
</table>

a. Dependent Variable: SammPerelli
b. Predictors in the Model: (Constant), Distanciamento_Psicológico

175
Tabela 109: Diagnóstico de colinearidade

<table>
<thead>
<tr>
<th>Model</th>
<th>Dimension</th>
<th>Eigenvalue</th>
<th>Condition Index</th>
<th>Variance Proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1,944</td>
<td>1,000</td>
<td>.03</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>.056</td>
<td>5,916</td>
<td>.97</td>
</tr>
</tbody>
</table>

* Dependent Variable: SammPerelli

176